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Abstract. One of the problems encountered in estimating the unknown pa-
rameters of the regression models is the presence of outliers in the data set.
This situation may cause problems in providing some assumptions such as the
normal distribution for the parameter estimation process and the homogeneity
of the variances. The case of the presence of outlier observations in the data
set, estimation methods based on fuzzy logic that can be minimized the level
of impact of this data are emerged as available methods. If fuzzy logic is used
in regression analysis, there are two main steps for parameter estimation. The
first of these is to define the clusters that compose the data set, and the other
is calculate the degree of membership to determining the contributions of the
data to each model for the clusters. In this study, type-2 fuzzy clustering algo-
rithm defined as an expansion of fuzzy c-means algorithm in the determination
of membership degrees of data sets was benefited. The presence of outliers in
the data set is addressed. An algorithm has been proposed to estimate the un-
known belonging to parameters of the regression model using the membership
degrees obtained relating to the cluster elements. The parameters were esti-
mated using regression methods to examine the effectiveness of the algorithm
that called robust methods, and the results obtained were compared.

1. Introduction

The concept of fuzzy sets was first described by Zadeh in 1965 with his work
Fuzzy Sets [1]. The fuzzy c-means method was introduced by Dunn in 1973. The
method was developed with the studies carried out by Bezdek [2]. Zadeh et al.
published their studies on fuzzy sets and their application to decision processes
in 1975 [3]. The fuzzy c-means algorithm developed by Bezdek et al., includes
euclidean, diagonal and mahalanobis distance measurements and the output from
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this algorithm is controlled by validity criteria [4]. Mendel and John precisely
defined type-2 fuzzy sets and used the expansion principle for type-2 fuzzy sets in
2002 [5].
They discussed the uncertainty of the m fuzzifier parameter of the fuzzy c-means

algorithm, and they defined the m parameter as the interval number. The fuzzy
c-means algorithm that include m fuzzifier parameter uncertainty is applied type
reduction, and solutions are obtained in 2007 [6]. Dalkilic and Apaydin determined
the optimal class number using the validity criterion when the independent variables
had an exponential distribution and has been made parameter prediction using
fuzzy neural network [7]. Juang et al. proposes a repetitive type-2 Fuzzy Neural
Networks (FNN) for dynamic system processing. The self-developing network is
a structure that does not require a pre-assignment task and can automatically
develop its parameters according to the training data [8]. Fazel Zarandi et al.
suggested a new type-2 fuzzy c-regression clustering method for the application
of the steel industry in the Takagi-Sugeno (T-S) system identification stage and
the model was tested on the actual data set from a steel company [9]. Enke and
Mehdiyev proposed the use of a hybrid model for the estimation of short-term
US interest rates. The model consists of fuzzy type-2 inferential neural network
that performs input pretreatment with multiple regression analysis and fuzzy type-
2 clustering based on differential evolution. The proposed model was applied to
estimate US 3-Month T-bill ratios in 2013 [10]. In 2015, Kalhori and Fazel Zarandi
presents a new approach to type-2 fuzzy clustering. This approach proposed to
separating clusters that does not use only the distance from the centers, and a new
validity index is suggested to determine the optimal number of clusters [11]. In
2016, Golsefid and Zarandi present an algorithm for clustering. In the clustering
algorithm that developed according to the dicentric type-2 fuzzy clustering model,
the centers of the clusters are defined by the double object. There are no type
reduction or blurring steps in this algorithm [12]. In 2016, Hwak proposed a method
for the design of the linear regression and this method is designed using Type-2
Fuzzy C-Means (T2FCM) clustering. This clustering approach takes into account
the uncertainty associated with the fuzzification factor when estimating cluster
centers. The method was also supported by experimental results [13]. Rubio et al.
presented an extension of the Fuzzy Possibilistic C-Means (FPCM) algorithm. In
this algorithm, Type-2 Fuzzy Logic Techniques were used to increase the effi ciency
of the Fuzzy Probabilistic C-Means (FPCM) method. In addition, the performance
of the method was controlled by experimental data [14].
In this study, membership degrees for cluster elements are obtained by using

type-2 fuzzy clustering algorithm, and an algorithm has been proposed for the
regression model to include these degrees based on parameter estimates. The situ-
ation of the outlier observation in the data set was discussed, and estimation values
from the parameters obtained based on type-2 fuzzy clustering were obtained.
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Remainder of this paper is organized as follows. In the second part of the study,
type-2 fuzzy clustering method was described. In the third section, definitions of
robust regression methods to be used in comparison were given briefly. In the fourth
section, an algorithm was proposed for parameter estimation based on the type-2
fuzzy membership. In the application part, Proposed algorithm for data set that
has outlier, and estimates concerning models obtained using regression methods
were compared.

2. Fuzzy Clustering Based Type-2 Fuzzy Logic

While equal fuzzifier index is given to each set-in type-1 fuzzy clustering, the
fuzzifier index is defined as an interval in type-2 fuzzy clustering. Different fuzzifier
index is given each cluster. Performance loss is prevented with description when
sets have different set volumes. First, volumes of the sets obtained with fuzzy
clustering algorithm are determined. Fuzzifier indexes based on obtained volumes
and cluster center based on these fuzzifier indexes are calculated. The objective
function values are determined based on the principle of minimizing the distance
between cluster centers and cluster elements [15].
The center value and membership values are updated until the objective function

reaches the smallest target value. Fuzzifier indexes that have the optimal center
value and membership degrees are determined, and observations are divided into
sets based on obtained membership degrees. The parameters of the linear regression
model related clusters are estimated based on the membership degree that obtained
from type-2 fuzzy clustering.
In the clustering that based on type-2 fuzzy logic, the objective function that

calculated for interval m = [m1,m2] defined as

Jm1

(
U, v

)
=

n∑
i=1

c∑
j=1

um1
ji d

2
ji, (1)

Jm2

(
U, v

)
=

n∑
i=1

c∑
j=1

um2
ji d

2
ji.

The aim of the function given by the Eq. (1) is minimizing the error. In the
system of Eq. (1), m1 and m2 are the fuzzifier index of the first and second
sets, respectively. The weighted least squares function Jm1

(
U, v

)
is the sum of the

weighted error squares of the first set and Jm2

(
U, v

)
is the sum of the weighed

error squares of the second set, and d2ji = ‖xi− vj‖2 is used to express the distance
between data and cluster centers. Type-2 fuzzy clustering algorithm that is based
on the aim of the function that given by Eq. (1) can be given by the following steps
[16, 17].
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Step 1: Initial values given as; c: number of sets, m1 and m2: fuzzifier indexes
of the first and second sets, U : matrix showing the membership degrees and ε:
termination criterion, are determined.
Step 2: Set centers are calculated using U matrix fuzzifier indexes m which is

arbitrarily determined in first step and m = [m1,m2] fuzzifier parameters,

vLj =

∑n
i=1 u

m1
ji xi∑n

i=1 u
m1
ji

, j = 1, ..., c, (2)

vRj =

∑n
i=1 u

m2
ji xi∑n

i=1 u
m2
ji

, j = 1, ..., c.

Step 3: uji and uji are indicates the upper membership degree and the lower
membership degree respectively [6]. These degrees updated with Eq. (3) and Eq.
(4).

uji =


1∑c

k=1

(
dji
dki

) 2
m1−1

, if 1∑c
k=1

(
dji
dki

) < 1
c∑c

k=1

( dji
dki

) 2
m2−1 , in other situations

(3)

uji =


1∑c

k=1

(
dji
dki

) 2
m1−1

, if 1∑c
k=1

(
dji
dki

) ≥ 1
c∑c

k=1

( dji
dki

) 2
m2−1 , in other situations

(4)

Step 4: When the vLj and vRj are indicated the centers that obtained by using
m1 and m2 respectively Eq. (5) is used to type-reduction for set centers.

vj =
vLj + vRj

2
, j = 1, ..., c (5)

Step 5: Type-reduction process is also performed for membership degrees with
Eq. (6).

uji =
uji + uji

2
, j = 1, ..., c; i = 1, ..., n (6)

Step 6: Type-reduction process performed for objective functions of weighted
sets with Eq. (7).

J
(
U, v

)
=
Jm1

(
U, v

)
+ Jm2

(
U, v

)
2

(7)
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Step 7: If ‖vL(t) − vL(t−1)‖ < ε and ‖vR(t) − vR(t−1)‖ < ε the iteration is ended.
In other case it returns to Step 2.

3. Robust Regression Methods

In the case of an outlier in the data set, the resulting regression model moves
away from observations other than the outlier by the effect of the outliers. Residues
of observations other than outliers are increased. In Robust analysis, it is assumed
that these deviations do not significantly affect the performance of the algorithm
[18]. In the case of Robust regression analysis with outlier, parameter estimation
that is less affected by the Least Square Method (LSM) is obtained [19]. In this
study, estimations were obtained by using M methods from Robust methods. The
M method minimizes the function of the residues rather than minimizing the sum of
the squares of the residuals. Regression coeffi cients are obtained by the minimizing
the sum.

n∑
i=1

ρ[
(
yi −

p∑
j=1

xij β̂j
)
/d] (8)

Huberâ’s ρ function is defined as

ρ
(
z
)

=

{
z2

2 |z| ≤ k
k|z| − k2

2 |z| > k
(9)

z =
ri
d

d = median|ri −median
(
ri
)
|/0.6745

where k is called tuning constant and k is set at 1.5. Sometimes the numerator
of d is called the median of the absolute deviations (MAD) [20].
Hampel Ψ function is defined as

Ψ
(
z
)

=


|z| 0 < |z| ≤ a
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z
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a
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)
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(
z
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Constant values are selected as a = 1.7, b = 3.4 and c = 8.5 in general [21].
Andrews (sinus estimate) Ψ function is defined as

Ψ
(
z
)

=

{
sin( zk

)
|z| ≤ kπ

0 |z| > kπ
(11)

where if the scale is known, k = 1.339 requires a premium of 5% otherwise
k = 1.5 or k = 2.1 [19].
Tukeyâ’s two weighted estimate, Ψ function is defined as

Ψ
(
z
)

=

{
z
(
1−

(
z
k

)2)2 |z| ≤ k
0 |z| > k

(12)

where if the scale is known, k = 4.685 implies a premium of 5% otherwise k = 5
or k = 6 [19, 20].

4. Parameter Estimation based on Type-2 Fuzzy Logic When Data Set
Has Outlier

The general purpose of the regression analysis is to determine the mathematical
structure of the functional relationship between the dependent variable

(
Y
)
and

independent variables
(
X1, · · · , Xp

)
. Determination of the mathematical structure

is carried out by estimating regression coeffi cients
(
β
)
.

Y = β0 + β1X1 + β2X2 + . . .+ βpXp + ε (13)

The least square method is one of the important methods used to estimate the
parameters of the linear regression model that given by Eq. (13). The important
assumptions to use this method; that error terms related to the model should have
normal distribution with zero-averaged and fixed variance. This assumption is ex-
pressed mathematically with ε ∼ N

(
0, σ2

)
. Estimators of the regression coeffi cients

denoted by β̂ and determinate by,

β̂ =
(
X ′X

)−1
X ′Y. (14)

The estimators of the dependent variable Y is shown as Ŷ and determined by

Ŷ = Xβ̂. (15)

The error for the linear regression model that expressed as the difference between
observation values Y and estimation values Ŷ is given by,
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ε =
(
Y − Ŷ

)
. (16)

In classical regression analysis, the observations that make up the dataset belong
to a single class. If the data set has different distributions in regression analysis,
different methods should be used in parameter estimation, other than classical
methods. These methods do not have to provide the necessary assumptions to use
the classical method. If the data set has different distributions, fuzzy methods are
among the methods that do not require the assumptions of classical regression.
First step of fuzzy regression analysis is to determine the different clusters for the
data set and the other is to obtain the degrees of membership to be used in the
prediction process.
In the process of separating data with different distributions into clusters, fuzzy

clustering algorithms suitable for distribution are used. With fuzzy clustering algo-
rithms, the degree of membership is determined for each cluster. These membership
degrees are used to weight the data. Parameters of the regression model are de-
termined to have a minimum error using data that weighted by fuzzy membership
degree.
Using the type-2 fuzzy clustering process, the algorithm proposed for parameter

estimation of the regression model for data weighted by membership degrees given
by the following steps,
Step 1: Beginning values given as; c: number of sets, m: fuzzifier indexes of

the first and second sets, U : matrix showing the degrees of membership and ε:
termination criterion, are determined.
Step 2: Set centers are calculated using U matrix and fuzzifier indexes m;

vj =

∑n
i=1 u

m
jixi∑n

i=1 u
m
ji

, j = 1, ..., c. (17)

Step 3: Objective function that depend on membership degree and set centers
is calculated by,

J
(
U, v

)
=

n∑
i=1

c∑
j=1

umji‖xi − vj‖2. (18)

Step 4: Membership degrees of each set are updated with,

uji =
1∑c

k=1

( ‖xi−vj‖
‖xi−vk‖

) 2
m−1

. (19)

Step 5: Set centers and objective function are updated with Eq. (17) and Eq.
(18) by use the new membership degrees.
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Step 6: If the difference between the membership degree in tth step and the
membership degree in (t − 1)th step is smaller than ε stops. It means that the
optimal membership degrees and center are calculated.
Step 7: The membership degrees obtained from Eq. (19) are used to cluster the

data set. m1 andm2 fuzzifier indexes are calculate and set centers based on fuzzifier
indexes are calculated with Eq. (2) given in Section (2). Objective functions values
that according to these centers are calculated by using Eq. (1) that given in Section
(2).
Step 8: To reduce the type of fuzziness type-reduction applied to the set centers

by use the Eq. (5) and, objective function value calculated by use the Eq. (7) given
in Section (2).
Step 9: To clustering that use type-2 fuzzy logic, membership degrees determined

by Eq. (3) and Eq. (4), and type-reduction operation is applied to the membership
degree by Eq. (6).
Step 10: After the center value in tth step and in (t− 1)th step is calculated, the

difference between them is determined. If the difference is less than termination
criterion ε for existing sets the optimal center and membership degree achieved.
Step 11: Estimate the linear regression modelâ’s parameters are realized by using

membership degree as weight with obtained from type-2 fuzzy clustering [6].
Independent variable is weight by membership degree

XWi(Type−2) = uij(Type−2)xj , i = 1, . . . , c; j = 1, . . . , n (20)

and model parameters are obtained by,

B̂i(Type−2) =
((
xjuij(Type−2)

)′
xj
)−1((

xjuij(Type−2)
)′
Yj
)
,

i = 1, . . . , c; j = 1, . . . , ni. (21)

The estimated values are calculated by,

Ŷi(Type−2) = XWi(Type−2)B̂i(Type−2), i = 1, . . . , c. (22)

Step 12: Error related to the models measured as

εi =

ni∑
i=1

(
Yi − Ŷi

)2
n

. (23)

The model that has the smallest error is used as estimated linear regression
model.
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5. Application

In this application, which will be discussed to determine the effectiveness of
the proposed algorithm to obtain the linear regression model the dataset contains a
dependent and an independent variable and set has 61 pairs of observations. Scatter
chart of the data that are shown in Figure 1.

Figure 1. Scatter chart of data

As can be seen from Figure 1, there are five outliers in the dataset. Observation
values, estimation values for the all related methods and the error amounts related
to the estimations are given in Table 1. In Table 2, models generated by the
parameters obtained using related methods and the amount of error calculated
from the models.
A graph of error for the models obtained using the relevant methods are shown

in Figure 2.

6. Results and Discussion

As a result, estimations that obtained with determined of fuzzy parameters in
proposed algorithm for parameter estimation, and the results obtained by robust
regression methods in the literature are compared. As a result of the seven methods
examined, error amounts were obtained. The errors amount belonging to these
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Table 1. Predictions values for related method and error values
of related predictions

X Y ŶType−1 εType−1 ŶType−2 εType−2 ŶHuber εHuber ŶHampel εHampel ŶTukey εTukey ŶAndrews εAndrews
4.0 3.5 3.1810 0.3190 3.4014 0.0986 3.9118 -0.4118 3.8906 -0.3906 3.6701 -0.1701 3.9673 -0.4673
0.5 0.5 3.4977 -2.9977 2.9990 -2.4990 0.6169 -0.1169 0.5357 -0.0357 0.1133 0.3867 0.6718 -0.1718
1.0 8.0 3.4839 4.5161 3.0431 4.9569 1.0876 6.9124 1.0149 6.9851 0.6214 7.3786 1.1426 6.8574
1.5 8.0 3.4590 4.5410 3.0894 4.9106 1.5583 6.4417 1.4942 6.5058 1.1295 6.8705 1.6134 6.3866
1.5 8.5 3.4652 5.0348 3.0884 5.4116 1.5583 6.9417 1.4942 7.0058 1.1295 7.3705 1.6134 6.8866
2.0 7.5 3.4273 4.0727 3.1368 4.3632 2.0290 5.4710 1.9735 5.5265 1.6376 5.8624 2.0842 5.4158
2.0 8.0 3.4372 4.5628 3.1352 4.8648 2.0290 5.9710 1.9735 6.0265 1.6376 6.3624 2.0842 5.9158
1.0 1.0 3.4537 -2.4537 3.0493 -2.0493 1.0876 -0.0876 1.0149 -0.0149 0.6214 0.3786 1.1426 -0.1426
1.0 1.5 3.4529 -1.9529 3.0497 -1.5497 1.0876 0.4124 1.0149 0.4851 0.6214 0.8786 1.1426 0.3574
1.5 0.5 3.4108 -2.9108 3.0993 -2.5993 1.5583 -1.0583 1.4942 -0.9942 1.1295 -0.6295 1.6134 -1.1134
1.5 1.0 3.4091 -2.4091 3.1000 -2.1000 1.5583 -0.5583 1.4942 -0.4942 1.1295 -0.1295 1.6134 -0.6134
1.5 1.5 3.4076 -1.9076 3.1008 -1.6008 1.5583 -0.0583 1.4942 0.0058 1.1295 0.3705 1.6134 -0.1134
1.5 2.0 3.4066 -1.4066 3.1015 -1.1015 1.5583 0.4417 1.4942 0.5058 1.1295 0.8705 1.6134 0.3866
2.0 1.0 3.3638 -2.3638 3.1512 -2.1512 2.0290 -1.0290 1.9735 -0.9735 1.6376 -0.6376 2.0842 -1.0842
2.0 1.5 3.3615 -1.8615 3.1527 -1.6527 2.0290 -0.5290 1.9735 -0.4735 1.6376 -0.1376 2.0842 -0.5842
2.0 2.0 3.3598 -1.3598 3.1541 -1.1541 2.0290 -0.0290 1.9735 0.0265 1.6376 0.3624 2.0842 -0.0842
2.0 2.5 3.3589 -0.8589 3.1554 -0.6554 2.0290 0.4710 1.9735 0.5265 1.6376 0.8624 2.0842 0.4158
2.5 1.5 3.3151 -1.8151 3.2052 -1.7052 2.4997 -0.9997 2.4528 -0.9528 2.1458 -0.6458 2.5550 -1.0550
2.5 2.0 3.3126 -1.3126 3.2079 -1.2079 2.4997 -0.4997 2.4528 -0.4528 2.1458 -0.1458 2.5550 -0.5550
2.5 2.5 3.3112 -0.8112 3.2107 -0.7107 2.4997 0.0003 2.4528 0.0472 2.1458 0.3542 2.5550 -0.0550
3.0 2.0 3.2659 -1.2659 3.2624 -1.2624 2.9704 -0.9704 2.9320 -0.9320 2.6539 -0.6539 3.0257 -1.0257
3.0 2.5 3.2639 -0.7639 3.2681 -0.7681 2.9704 -0.4704 2.9320 -0.4320 2.6539 -0.1539 3.0257 -0.5257
3.0 3.0 3.2637 -0.2637 3.2742 -0.2742 2.9704 0.0296 2.9320 0.0680 2.6539 0.3461 3.0257 -0.0257
3.5 2.5 3.2184 -0.7184 3.3256 -0.8256 3.4411 -0.9411 3.4113 -0.9113 3.1620 -0.6620 3.4965 -0.9965
3.5 3.0 3.2183 -0.2183 3.3421 -0.3421 3.4411 -0.4411 3.4113 -0.4113 3.1620 -0.1620 3.4965 -0.4965
3.5 3.5 3.2214 0.2786 3.3543 0.1457 3.4411 0.0589 3.4113 0.0887 3.1620 0.3380 3.4965 0.0035
4.0 2.5 3.1764 -0.6764 3.3773 -0.8773 3.9118 -1.4118 3.8906 -1.3906 3.6701 -1.1701 3.9673 -1.4673
4.0 3.0 3.1767 -0.1767 3.3933 -0.3933 3.9118 -0.9118 3.8906 -0.8906 3.6701 -0.6701 3.9673 -0.9673
4.5 2.5 3.1396 -0.6396 3.4217 -0.9217 4.3825 -1.8825 4.3699 -1.8699 4.1782 -1.6782 4.4381 -1.9381
4.5 3.0 3.1411 -0.1411 3.4287 -0.4287 4.3825 -1.3825 4.3699 -1.3699 4.1782 -1.1782 4.4381 -1.4381
4.5 3.5 3.1475 0.3525 3.4289 0.0711 4.3825 -0.8825 4.3699 -0.8699 4.1782 -0.6782 4.4381 -0.9381
4.5 4.0 3.1602 0.8398 3.4192 0.5808 4.3825 -0.3825 4.3699 -0.3699 4.1782 -0.1782 4.4381 -0.4381
5.0 3.0 3.1132 -0.1132 3.4655 -0.4655 4.8532 -1.8532 4.8491 -1.8491 4.6864 -1.6864 4.9089 -1.9089
5.0 3.5 3.1227 0.3773 3.4637 0.0363 4.8532 -1.3532 4.8491 -1.3491 4.6864 -1.1864 4.9089 -1.4089
5.0 4.0 3.1395 0.8605 3.4569 0.5431 4.8532 -0.8532 4.8491 -0.8491 4.6864 -0.6864 4.9089 -0.9089
5.5 3.5 3.1078 0.3922 3.5008 -0.0008 5.3239 -1.8239 5.3284 -1.8284 5.1945 -1.6945 5.3797 -1.8797
5.5 4.0 3.1298 0.8702 3.4947 0.5053 5.3239 -1.3239 5.3284 -1.3284 5.1945 -1.1945 5.3797 -1.3797
6.0 4.0 3.1303 0.8697 3.5328 0.4672 5.7946 -1.7946 5.8077 -1.8077 5.7026 -1.7026 5.8505 -1.8505
6.0 4.5 3.1678 1.3322 3.5245 0.9755 5.7946 -1.2946 5.8077 -1.3077 5.7026 -1.2026 5.8505 -1.3505
6.5 4.0 3.1390 0.8610 3.5713 0.4287 6.2653 -2.2653 6.2870 -2.2870 6.2107 -2.2107 6.3213 -2.3213
6.5 4.5 3.1818 1.3182 3.5630 0.9370 6.2653 -1.7653 6.2870 -1.7870 6.2107 -1.7107 6.3213 -1.8213
6.0 9.0 9.1277 -0.1277 9.1145 -0.1145 5.7946 3.2054 5.8077 3.1923 5.7026 3.2974 5.8505 3.1495
6.5 9.0 9.0993 -0.0993 9.0911 -0.0911 6.2653 2.7347 6.2870 2.7130 6.2107 2.7893 6.3213 2.6787
6.5 9.5 9.1000 0.4000 9.0918 0.4082 6.2653 3.2347 6.2870 3.2130 6.2107 3.2893 6.3213 3.1787
7.0 8.5 9.0738 -0.5738 9.0689 -0.5689 6.7360 1.7640 6.7662 1.7338 6.7189 1.7811 6.7921 1.7079
7.0 9.0 9.0727 -0.0727 9.0625 -0.0625 6.7360 2.2640 6.7662 2.2338 6.7189 2.2811 6.7921 2.2079
7.0 9.5 9.0742 0.4258 9.0668 0.4332 6.7360 2.7640 6.7662 2.7338 6.7189 2.7811 6.7921 2.7079
7.5 9.0 9.0485 -0.0485 8.9368 0.0632 7.2067 1.7933 7.2455 1.7545 7.2270 1.7730 7.2629 1.7371
7.5 9.5 9.0504 0.4496 9.0428 0.4572 7.2067 2.2933 7.2455 2.2545 7.2270 2.2730 7.2629 2.2371
8.0 8.5 9.0275 -0.5275 9.0320 -0.5320 7.6774 0.8226 7.7248 0.7752 7.7351 0.7649 7.7337 0.7663
8.0 9.0 9.0270 -0.0270 9.0249 -0.0249 7.6774 1.3226 7.7248 1.2752 7.7351 1.2649 7.7337 1.2663
8.5 8.5 9.0087 -0.5087 9.0222 -0.5222 8.1481 0.3519 8.2041 0.2959 8.2432 0.2568 8.2045 0.2955
8.5 9.0 9.0080 -0.0080 9.0191 -0.0191 8.1481 0.8519 8.2041 0.7959 8.2432 0.7568 8.2045 0.7955
8.5 9.5 9.0098 0.4902 9.0202 0.4798 8.1481 1.3519 8.2041 1.2959 8.2432 1.2568 8.2045 1.2955
9.0 9.0 8.9915 0.0085 9.0091 -0.0091 8.6188 0.3812 8.6833 0.3167 8.7513 0.2487 8.6752 0.3248
9.5 9.0 8.9771 0.0229 8.9976 0.0024 9.0895 -0.0895 9.1626 -0.1626 9.2595 -0.2595 9.1460 -0.1460
9.5 9.5 8.9780 0.5220 8.9973 0.5027 9.0895 0.4105 9.1626 0.3374 9.2595 0.2405 9.1460 0.3540
10.0 8.5 8.9662 -0.4662 8.9865 -0.4865 9.5602 -1.0602 9.6419 -1.1419 9.7676 -1.2676 9.6168 -1.1168
10.0 9.0 8.9643 0.0357 8.9851 0.0149 9.5602 -0.5602 9.6419 -0.6419 9.7676 -0.7676 9.6168 -0.6168
10.5 9.0 8.9529 0.0471 8.9721 0.0279 10.0309 -1.0309 10.1212 -1.1212 10.2757 -1.2757 10.0876 -1.0876
11.0 9.0 8.9425 0.0575 8.9587 0.0413 10.5016 -1.5016 10.6004 -1.6004 10.7838 -1.7838 10.5584 -1.5584
Error εType−1 = 4.2887 εType−2 = 4.2767 εHuber = 5.0208 εHampel = 5.0646 εTukey = 5.4003 εAndrews = 4.9785
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Figure 2. Error amount graph belonging to data.

Table 2. Linear regression models and errors

Methods Models Errors
Least Square Method Ŷ = 1.1909 + 0.8119X εLSM = 4.7141

Type-1 Fuzzy Clustering
Ŷ1 = 3.5395− 0.0920X1j

Ŷ2 = 9.3577− 0.0414X2j

εType−1 = 4.2887

Type-2 Fuzzy Clustering
Ŷ1 = 2.9495 + 0.1848X1j

Ŷ2 = 9.3152− 0.0601X2j

εType−2 = 4.2767

Huber Method Ŷ = 0.1462 + 0.9414X εHuber = 5.0208

Hampel Method Ŷ = 0.0564 + 0.9585X εHampel = 5.0646

Tukey Method Ŷ = 0.3949 + 1.0162X εTukey = 5.4003

Andrews Method Ŷ = 0.2010 + 0.9416X εAndrews = 4.9785

methods are obtained that LSM is 4.7141, type-1 fuzzy clustering is 4.2887, type-
2 fuzzy clustering is 4.2767, Huber method is 5.0208, Hampel method is 5.0646,
Tukey method is 5.4003, Andrews methods is 4.9785. As can be seen from the
results, the model with the lowest error is the model obtained from type-2 fuzzy
clustering. It can be said that if there are outlier observations in the data set, the
method that using type-2 fuzzy clustering can be preferable as an effective method.
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