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APPROXIMATION BY BEZIER VARIANT OF
JAKIMOVSKI-LEVIATAN-PALTANEA OPERATORS INVOLVING
SHEFFER POLYNOMIALS

P.N. AGRAWAL and Ajay KUMAR

Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee-247667,
Uttarakhand, INDIA

ABSTRACT. In the present paper, the Bézier variant of Jakimovski-Leviatan-
Piltdnea operators involving Sheffer polynomials is introduced and the degree
of approximation by these operators is investigated with the aid of Ditzian-
Totik modulus of smoothness, Lipschitz type space and for functions with
derivatives of bounded variations.

INTRODUCTION

Approximation theory is a crucial branch of Mathematical analysis. The funda-
mental property of approximation theory is to approximate a function f by another
functions which have better properties than f. In 1950, Szasz [14] introduced a
generalization of Bernstein polynomials on the infinite interval [0,00) and estab-
lished the convergence properties of these operators. Subsequently, Jakimovski-
Leviatan [8] generalised the Szdsz operators as

e~ nw 0 k
(i) = oy Lomtn
by means of Appell polynomials which are generated by:
g(u)e" = Zpk(m)uk, (0.2)
k=0

where g(u) = > po, axu®, ap # 0 is an analytic function, on the disk |u| < r (r > 1),
under the assumption pg(z) > 0, for z € [0, c0).
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In 2008, Paltinea [11] defined a generalisation of the Phillips operators [12] based
on a parameter p > 0, as

Go(f:) ank / 0 (Of(dt+ e f(0), ze0.00),  (0.3)

k ok
where s, (z) = e’”“’% and @7 (t) = F&:)e*”pt (nt)#?~1 which includes Szdsz

operators for p — oo and Phillips operators for p = 1. For f € C|0, 00), Verma and
Gupta [15] defined the Jakimovski-Leviatan-Paltdnea operator as follows:

ZLM / Q) (O f()dt+ L o(2)f(0), p>0, (0.4)

where L, ;(z) = %pk(mc) and Q) . (t) = F?k")p)e‘"’)t(npt)’“’_1 and established
an asymptotic formula and rate of convergence for these operators. Goyal and
Agrawal [4] defined the Bézier variant of these operators (0.4) and established the
degree of approximation using Ditzian-Totik modulus of smoothness, Lipschitz type
space and for functions having a derivative of bounded variation.

Let C(2) = >0 cxz”, (co # 0) and D(z) = > p2, dxz", (d1 # 0) be analytic
functions on the disc |z| < r, 7 > 1 where ¢; and dj, are real. The Sheffer type
polynomials {pg(z)} are given by the generating functions of the form

)etP ) Zpk V2R 2 < (0.5)

Under the following assumptions:
(i) for t € [0,00), p(t) >0, k=0,1,2,---
(i) C(1) #0 and D'(1) =1,
Ismail [6] defined another generalisation of the Szdsz operators and the Jakimovski-
Leviatan operators [8] using the Sheffer polynomials as

—nzD (1)

T(f;z) = Zpk nz) () (0.6)

and estabilished some approximation properties of these operators. For the special
case D(t) =t and C(t) = 1, we find pp(z) = l;, therefore (0.6) reduces to Szasz
operators and for the case D(t) = t, the operators T, (f;z) yield the operators
P,(f;x) defined in (0.1). Inspired by the work of Verma and Gupta [15], Mursaleen
et al. [9] defined the Jakimovski-Leviatan-Piltdnea operators by means of Sheffer
polynomials, and integral modification of the operators given by (0.6), as

M,,(f:2) ZLM /)Q (Odt + Loo@)f(0), p>0,  (0.7)
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where L, ;(z) = %pk(nx) and Q) ,,(t) = (i e~ (npt)kP~1 and established
some convergence properties of these operators with the help of the Korovkin-type
theorem, rate of convergence by using Ditzian-Totik modulus of smoothness and
approximation properties for the functions having derivatives of bounded variation.
Since the Bézier curves have important applications in computer aided graphics
and applied mathematics, Zeng and Piriou [16] initiated the study of a Bézier vari-
ant of Bernstein operators. Zeng [17] introduced the Szasz-Bézier operators and
discussed the rate of convergence of these operators for the functions of bounded
variations. Subsequently several researchers defined the Bézier variants of some
other sequences of positive linear operators and studied their approximation prop-
erties (see, e.g., [1,2,4,5,7,13]).
Motivated by the above work, we introduce the Bézier variant of the operators de-
fined in (0.7). Let A > 0 and Cy[0,00) := {f € C[0,00) : f(t) = O(e*) as t — cx}.
For § > 1 and f € C)]0,00), the Bézier variant of (0.7) is defined as

M (i) =3 N () / Q" (Wt + NO@)F(0), p>0,  (08)
k=1

—naD(1)

where Nf,ﬁk)(x) = [Jn,k(m)]ﬁ - I:Jn’k+1(x)j|ﬁ, B >1; Lyi(z) = echk(nx) and
Jn k() = Z;ik L,, ;j(z) with the following properties:
(1) Jpp(x) = Jpgt1(x) = Lpk(x), k=0,1,2,---,
(2) Jno(z) > Jpa(z) > Jpo(x) > - Jynlx), x€l0,00).
In particular,
(i) if B =1, the operators Mﬁjp(f; x) include the operators given by (0.7),
(ii) if 5 = 1 and D(t) = t, the operators M} (f;x) reproduce the operators
defined in [15],
(iii) if C(t) =1, D(t) =t, p=1 and 8 = 1, the operators M} (f;x) reduce to
the well known Phillips operators [12].

The organization of the paper as follows: In Section 1, the Bézier variant of
Jakimovski-Leviatan-Paltdnea operators involving Sheffer polynomials has been in-
troduced. In Section 2, some auxiliary results such as moments, central moments
and lemmas have been presented. In Section 3, the rate of convergence by us-
ing Ditzian-Totik modulus of smoothness and Lipschitz type space have been dis-
cussed. In Section 4, the approximation result for the functions having derivatives
of bounded variation has been discussed.

1. AUXILIARY RESULTS

Lemma 1.1. The r*" order moments M, ,(t";x), for r =0,1,2, are given by the
following identities:

(i) My,(1;2) = 1;
.. c’'(1
(i) M p(t;z) =z + Sl
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T c’ c’ o
(iil) M,,(t% ) = 2% + = (1 + % + 20(8) + D”(l)) + L ((Hp) él()l;rp (1)).

nZp
As a consequence of the above lemma, we obtain

Lemma 1.2. The central moments M, ,((t — x)";z), r = 1,2, are given by the
following equalities:

(i) My, (t — z;2) = S
(ii) M, ((t—2)*2) = gj(l +14 D”(l)) + 4 (“*”%W)

In what follows, we denote M, ,((t — x)*z) =&, ,(z).

Remark 1.3. For sufficiently large n and p > 2, one has

1
My ((t = 2)%2) < W(1++D”(1)). (1.1)
n p

Let Cp[0, 00) be the family of all continuous and bounded functions defined on
[0, 00).

Lemma 1.4. For every f € Cgl0,00), we have

Moo (f; )l < (I £I- (1.2)
Proof. The proof of this lemma is readily follow with the help of Lemma 1.1(i).
Hence, the details are omitted. ([

Lemma 1.5. For A >0, let f € C\[0,00). Then

M, (f;2)] < BMi (| f; ). (1.3)
Proof. For 0 < u,v <1 and § > 1, the following inequality holds
|uf —vP| < Blu — . (1.4)

Since, N7 (2) = [Jaw()]” = [Jnss1(2)]”, for all 5> 1 and

Tng(@) = Lnj(@) <> L jla) =1,
=k j=0
in view of the inequality (1.4), we have
N,(f,g (@)| = |[Jor(@)]” - [Jn,kﬂ(xﬂﬂ‘ < BlInk (@) = Jnk+1(2)| = BLy k(). (1.5)
Further,
M (fio)| <30 NS (@) / Q4 O] fB)dt+ NG @)|IFO0), p>0. (16)
k=1

From (1.5) and (1.6), we get the desired result. O
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2. MAIN RESULTS

Fort >0,z >0, and 0 < a < 1, the Lipschitz type space [10] is defined as:
x —t|°
Lije(0) = { £ € C10.50) : | £(a) - (o) < K 2L
(z+1)2
where K is some positive constant.

In the next theorem, we investigate the rate of convergence of the operators
Mf (-;x) for the function f € Lipj (a).
Theorem 2.1. Let f € Lip} («). Then for each x > 0, we have
BK s
|M7[3,p(f7$) - f($)| < g(gn,p(x)) z.

Proof. In view of Lemma 1.5 and the fact that, p(l x) =1, we have

IME(fi2) — f@)] < IME(f(1) — fl@)ia)]
< BM,,(If(t) - f(@));2)
< BKM,, (j 1, )
< B, (|x—t|a ) 2.1)

Now, applying Holder’s inequality by setting p = 2/« and ¢ = 2/(2 — «) and using
Lemma 1.1

« 2—«
3 ="
Moo= tf50) < (Mollo=0%a)) " (M, (15%50))
3 ;
< (sl -0%0)) = (€0, (0) (22)
From (2.1) and (2.2), we get the required result. O

Let us recall the definitions of the Peetre’s K-functional and the Ditzian-Totik
first order modulus of smoothness. Let ¢(x) = /z and f € Cg[0, 00).

Definition 2.1. [3] The Ditzian- Totik first order modulus of smoothness wg(f;0), 6 >

0, is defined by
JC<$Jr h¢2(l’)> B f(x h¢2(fc))

Definition 2.2. [3] The Peetre’s K-functional is defined by
Ky(f;68) == nf{[|f — gll + Sllog'|| + 6*[|g'll, 6 >0}, ¥ geW,,

where Wy :={g : g € AC,c, ||0g'|| < 00, ||d'|| < 0o} and g € ACjo. means that g is
a locally absolutely continuous function in [0, 00).

ho(x)
2

we(f;0) = sup , Yzt € [0, 00).

0<h<§
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From [8], it is known that wy(f; ) ~ Ky(f;9), i.e. there exists a constanty > 0,
such that

v wo(f;0) < Ko(f;0) < qws(f30). (2.3)

In the next theorem, Ditzian-Totik first order modulus of smoothness is used to
establish a direct approximation theorem.

Theorem 2.2. Let f € Cg[0,00) and ¢(z) = \/z, then for every x € [0,00) we
have

ME(fs) - F(x)] < Cog (f;

where C' is a constant and independent on f and n.

)

Proof. Let z € [0,00) be arbitrary but fixed. For g € Wy, we have the following
representation

Applying the operator Mff ,(f; ™) on both sides of the above equation, we obtain

t
Mff,p</ g’(U)du;x>,

‘ t t
Mgp(/ g/(u)du;x>’ SMf’p(‘/ g/(u)du

In view of Lemma 1.5, we have

My ((t—2)%2) = My, ((t —2)%2)| < BMy,,((t — )% 2).

MP (g:x) — g(x)

\MJ (g;2) — g()]

: x)(2.4)

Hence, using Lemma 1.2, we get

ME (¢ - @) a) <5{ (1+;+D/,(1)> L L ((1+p)C’(gl()1)+ pC”(1)>}.
(2.5)

T
n n2p

To estimate the right hand side of (2.4), we split our domain [0, c0) into two parts

A=10,1/n] and B = (1/n, ).

Case-I:

If z € [0,1/n], then from (2.5), for sufficiently large n, we have Mf’p((t —x)% 1) ~

n%p (%W), i.e. there exists some k; > 0, such that

s e < B (L A)C() O ()
M (- i) < 7 (LEPICLE PR,

Hence, applying Cauchy-Schwarz inequality in equation (2.4), we have

ME (g52) — g(o)] < ||g'||M5,p(|t—x|;x)
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1/2
< 19 (M2 (0t - 20)
< 17 M (1+p)C'(1) + pC" () /*
- c(1)
_ 21y
= nllg I, (2.6)
1/2
wherealz{k;ﬁ(uww&wﬂ |

n

Case-II: If z € (1/n,00], then from (2.5), we obtain Mfyp((t —2)%z) ~ B2 <1 +

Ly pr (1)) Hence, there exists some constant kg > 0, such that

My ((t—2)%2) < kb (1 + % - D"(l)).

/: g (u)du| <

Since

and for any z,t € (0,00),

‘/gb(l ‘/ el = AV f)pz%;ﬂ;lig el
we have
[ s < 2oL o

Now, combining equations (2.4) and (2.7) and using Cauchy-Schwarz inequality, for
any z € (1/n,00), we have

|MJ (g:2) — g()|

IN

2||¢g’||¢-1<x>Mﬁ,p(|t - x|;x)

IN

1/2
2og' 6~ (=) (Mﬁ,p«t - x>2;m>)

_ alegl s

n

IA
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1/2
where Ay = (k‘gﬁ (1 + % + D”(l))
Again, combining equations (2.4), (2.6) and (2.8), for z € [0, 00) we have
log'll | Avy
A, 129 L, =1
A2 21y

AL L), where & = max(an, ).

Hence, using Lemma 1.4 and above equation, we get

|MJ (gix) —g(z)] <

IN

ME(fix) — f@)] < IME(g:2) — g(@)] + /(x) — a(@)] + M2, (f — g:2)
< 2l -al+a( 2y S
< A’(f—g||+¢g”+1|| ||>, A= max(2, A).

NG

Finally, taking the infimum on the right side of the above equation over all g € W,

ME (frz) — f(w)ISA’K¢(f;

and using the relation (2.3), we get

IME (i) — F(@)] < Al wy (f; \}ﬁ)

Now taking C' = A’~, the proof of the theorem is completed. O

)

3. FUNCTIONS WITH DERIVATIVES OF BOUNDED VARIATION

Let DBV4[0,00), be the class of all functions f defined on [0, 00) with |f(¢)| <
C(1+t?), C > 0 and having a derivative f’ equivalent to a function of bounded
variation on every finite subinterval of [0, 00). Then we observe that for all functions
f € DBV;4[0, 00), there holds the following representation

fx) = / " o0t + F(0),

where ¢ is a function of bounded variation on every finite subinterval of (() 00).
In view of the Dirac-delta function, the alternate form of the operator M. ( f;z)
can be written as

Mfip(f;x): /0 FS (e, 0)f(0dt, p>0, (3.1)

where Fﬁp( t) = > N ( Q. (t) + N,(fg(x)é(t) and J(t) is a Dirac-delta
function.

To establish the rate of convergence of the operators given by (3.1) for f €
DBV4[0, 00), the following lemma is needed:
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Lemma 3.1. Let x € (0,00) and p > 2. Then for sufficiently large n, we have
) 8 (e = [ FL e < 22 (1424 07())

I S
z—x1)2)

0< 2 <=,

(i) 1— @ (z,22) = [ FF (w,t)dt < 5;”(1 + 4+ D”(l))m, T <
To < O0.

Proof. (i) Using (3.1) and Remark 1.3, we have

x 2
VS —t
0 (z,71) = / 5@ tdt</0 (x_m) FJ (x,t)dt
(x — 1)~ QMB ((t—:zc) x) < Bz —x)” 2Z\LLP((t—gc)Q;ﬂc)

1 1
< Bl b oy —L
n p (x — x1)?
In the same way, assertion (ii) can be easily proved. O

Theorem 3.2. Let f € DBV32[0,00) and pn > 2. Then for each x € (0,00) and
sufficiently large n, we have

1/2
M (f:2) - F@)] < §+1f'<x+>+ﬁf/<x—>|\/‘jf (142 +07)
3/2
+ 56 If () — |\/“$ 14 = +D”()>
[vn]
Bu 1 " THE g T ety
+ 21240 <1>) > v+ v
+ f"(u +D”(1)>{|f(2w) (@) =2 (@)}

pzf "
+|f' (x |\/ 1+p+D())

where VA(f!) denotes the total variation of f. on [c,d] and f. is defined by

ft)=f(a=), 0<t<u,
fa(t) = 0, r=t, (3.2)
@)= fl(z+), z<t<oo.
Proof. In view of the fact that Mfyp(l; x) = 1, and the alternate form (3.1) of the
operators given by (0.8), for every x € (0, 00) we have

M (f(t);2) = fx) = MY, (f(t)z) = My ,(f(x);@) = M (f(t) = f(x);)
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Amﬂﬁuwxﬂw—fu»ﬁ

= /O b Fnﬁ,p(x,t)< /x t f’(u)dy)dt. (3.3)

For any f € DBV5[0,00), and using (3.2), we can write
f'(z+) + f’(w—)} n [f’(ﬂﬂ-) + Bf'(z—)

2 1+ 5

ﬂ_l /
sanlv ~ ) + 51| + 20, (.9

f) = @@ﬂﬂm—

f'(a+) = f'(z—) [

* 2

where
1, z=v

02(v) = { 0, z=#v.
Combining equations (3.3) and (3.4), we get

M (f();2) = fla) = /OooFf’p(Lt)(/:{(5m(y)[f/(y)—f/(x—i_);f/(m_)}
NEEETE

1+p
P Cay 3 f(z=) [sgn(u )+ ngﬂ
+fi(v) }du) dt
= Wy + Wy + U3+ Ty, (3.5)
where
vo= [TEeo [ow]re - TR g
v, = /Ooo F? (x,1) /: {f/(x—'—)liéf/(x_)]dydt
Uy = /OOO Frﬁp(x,t) /: f'a+) ; f'(z=) {sgn(u —z)+ g;ﬂ dvdt

oo t
Uy = / nyp(x,t)/f;(l/)dudt.
0 T

We can easily see from the definition of §,(¢) that

U, = /OOO F? (x,1) /; 5. (v) {f’(y) _ S ;f/(x_)}dydt:o (3.6)
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Now, we evaluate U3,

Us; =

v = [ e [ [

B o o

_ :f'(”)li/;f '(“f‘): /O P (e, 4)(t - )t

S TSRS ) |, o
/ Mxt/f cas) |:8gn(l/—x)+g_: dud
<6+1)f = 2f(m )M/B (= 2)a)

t—x),x)

2
)

+f’(fv+);f’(w—) /jpﬁ( )(t — )dt
()LD Te
+f’(x+);f’($—) /Ooopfw(x )| — t]dt
(551 P, - 0.
PP TE g (ol ), (38)

Combining equations (3.5)-(3.8), we have

M, (£(t);2) = f(z)] <

1+,5
B—1|f(z4) -

+
B+1
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+ f’($+);fl($_) My ([t = xl,2) + Wl (3.9)

Now, applying Lemma 1.5 and the Cauchy-Schwarz inequality, we get

M7 (f(t);2) = f(@)] < = |f (@) + BF (2 =) (BMa,((t = 2)%52))/?

ﬁ+1
B

x — — 1/2 4
bl @) - P@olEMa (- 2 4]

61/2 / / Hr 1 "
Z 1w+ 61 <x—>\/n(1+p+D o)

BS/Q
ey

f/(x)|\/*f <1+/1)+D”(1)> 4| Wy). (3.10)

IN

| (z+)

We now estimate |¥,|. We may write

[e%s} t
Uy = / ng(:c,t)/ fh(v)dvdt = Uy 4 W,
0 T

xT t
v, — /0 P (2.1) / () dvdt
o0 8 t
!
\116:/30 Fn,p(x,t)/x fa(v)dvdt.

Since f dy®f (x,t) < 1, for each [¢,d] C [0,00) and f(z) = 0, using Lemma 3.1
and integration by parts with z; = x — %, we have

w5 = ‘ / R () / t f;(wdudt]

where

= (/f dy>dt npmt’ a:t)dt‘

< / 7400) ~ Fua)0f, xt\dt+/ 72(6) = £1(a) 190, (o 1)
< (1o [ m(n)ﬁdm /:Vé”(f;)dt

< 57’“::”<1+[1)+D” )/ VD t+%Vf,%(f;)(3.11)
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Substituting ¢ = x — £, we obtain

5/1“75 1 " /miﬁ x( 1
- 1+p+D(1) ‘/t(”)T—t)?dt

Ji
_ ﬂ“<1 ;1 +D”(1)> / Ve (f)du
1
N
< B“<1+ +D”(1)) > ' Ve (f2)du
" k=1"F ’
o %
< (1 o D”(l)) D VL (f2)- (3.12)
k=1
Combining (3.11) and (3.12), we have
vl
< bu (1 +-4+D"(1 ) Z 2 e (fL) + TV;,ﬁ(f;). (3.13)
From Lemma 3.1(ii), F}J (2,t) = —dy(1 — @, (2,t)), ¢t > x, hence we may write
2x o) t
W < (/ fulv du) (1= @, ))‘ + /2 (/ f;(v)dv)thf,p(x,t)’
= \117 + \I/g,say.

First estimate Uy,

U, = /:x (/: f;(y)dy)dt(l—fbg)p(x,t))‘

< | [zl - w2+ [ t)(l—@ﬁ,p@,t))dt'
< | [ vw - fena)a- o, e+ [ If;<t><1—¢2,p<x,t>>dt]
< On (1 Lo >) F22) — f(2) — 2f @ t)]

L Bue ) [F VG
(H +D())/J+L/ﬁ(fﬂ—t) dH/- Vel

Now, substituting ¢ = x + 7, we have

< On (1 S 4D >) F(20) — f(2) — 2f (@ b))

o
ﬂ“<1+ +D"(1 )/ VT du+/ Vi
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< On (1 Rt >) F(20) — f(2) — 2f (@ b))
L om (1 + oD ) Z ViTE(F %Vf%(f;). (3.14)

Using Cauchy-Schwarz inequality

Ty = /% (/f du>Fﬁ tm)dt‘
-1 / (1'0) = £ a0 o)

/ TR — F@)ES (1, x)dt' + Tl = allf @) [ER (¢, )t

2x 2z

IN

IN

N f(t)Fff,p(t,w)dt’ )

2x

= B
Fy L, Z‘)dt’

2z

ol [ e-o2r >dt)1/2
/:(1 +2)FS (t2)d| + ()]

+|f’(:c+)|\/’flﬁ (1 + % + D”(l))

Since ¢t > 2z, we have t < 2(¢t — z), hence

c<4 + ;) (/:(t - x)QF,ﬁp(t,x)dt) + % (1 + % + D”(l)) ()]
+|f’(x+)|\/’“‘ff (1 + % + D”(l))
et

+|f’(x+)|\/uiﬁ <1+/1)+D”(1)) (3.15)

From (3.14) and (3.15), we obtain

vy < D <1 +1ap )){f@x) = @) —2f b))

IN

C

= B
Fy L, a:)dt’

2z

Uy

IA

L ou (1 4o+ D”(l)) S+ =)
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o (Mo D)L (L )

T p

+|f’(x+)|\/“flﬁ (1+;+D”(1)). (3.16)

Combining the estimates (3.10), (3.13) and (3.16), we obtain the desired result. O
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