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ON THE LIPSCHITZ STABILITY OF INVERSE NODAL
PROBLEM FOR DIRAC SYSTEM

Emrah YILMAZ and Hikmet KOYUNBAKAN
Fırat University, Department of Mathematics, 23119, Elazı̆g, TURKEY

Abstract. Inverse nodal problem on Dirac operator is determination prob-
lem of the parameters in the boundary conditions, number m and potential
function V by using a set of nodal points of a component of two component
vector eigenfunctions as the given spectral data. In this study, we solve a
stability problem using nodal set of vector eigenfunctions and show that the
space of all V functions is homeomorphic to the partition set of all space of
asymptotically equivalent nodal sequences induced by an equivalence relation.
Moreover, we give a reconstruction formula for the potential function as a
limit of a sequence of functions and associated nodal data of one component
of vector eigenfunction. Our technique depends on the explicit asymptotic
expressions of the nodal parameters and, it is basically similar to [1, 2] which
is given for Sturm-Liouville and Hill’s operators, respectively.

1. Introduction

Inverse spectral problems have been a significant research area in mathematical
physics. Different methods have been proposed to recover coeffi cient functions in
differential equations by using spectral data [3—10]. Generally, the spectral data
have consisted of the eigenvalues and a corresponding sequence of norming con-
stants, or two eigenvalue sequences. In 1988, McLaughlin showed that knowledge
of nodal points can determine the potential function of Sturm-Liouville problem
up to a constant [11]. This is so called inverse nodal problem. Numerical schemes
were then given by Hald and McLaughlin [12] to reconstruct the density function
of a vibrating string, the elastic modulus of a vibrating rod, the potential function
in Sturm-Liouville problem. Independently, Shen et al. [13] studied the relation
between nodal points and density function of string equation in 1988. Many re-
sults and reconstruction formulas have been derived about inverse nodal problem
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by several authors [14—18]. Here, we deal with the inverse nodal problem for Dirac
system.
Dirac system is a modern presentation of the relativistic quantum mechanics of

electrons intended to make new mathematical results accesible to a wider audience.
It treats in some depth relativistic invariance of a quantum theory, self-adjointness
and spectral theory, qualitative features of relativistic bound and scattering states
and the external field problem in quantum electrodynamics, without neglecting the
interpretational diffi culties and limitations of the theory [19].
Inverse problems for Dirac system had been investigated by Moses [20], Prats and

Toll [21], Verde [22], Gasymov and Levitan [23], and Panakhov [24]. It is well known
that two spectra uniquely determine the matrix valued potential function in Dirac
system [25]. In [26], eigenfunction expansions for one dimensional Dirac operator
describing the motion of a particle in quantum mechanics were investigated. In
addition, inverse spectral problems for weighted Dirac system were studied in [27].
One studied the properties of the eigenvalues and vector-valued eigenfunctions

for the Dirac system with the same spectral parameter in the equations and the
boundary conditions [28]. Sampling theory of signal analysis associated with Dirac
systems, when the eigenvalue parameter appears linearly in the boundary condi-
tions was investigated in [29]. One investigated a problem for the Dirac differential
operators in the case where an eigenparameter not only appears in the differential
equation but is also linearly contained in a boundary condition, and proved unique-
ness theorems for inverse spectral problem with known collection of eigenvalues and
normalizing constants or two spectra [30]. Other than these studies, there are many
papers in literature (see [31—35]).
Inverse nodal problems for Dirac system had not been studied until the works

of Yang and Huang [36]. They gave reconstruction formulas for one dimensional
Dirac operator by using nodal datas. Later years, inverse nodal problem was solved
for Dirac system under different boundary conditions [37,38].
Consider the Dirac system

By′(x) +Q(x)y(x) = λy(x), 0 ≤ x ≤ π, (1)

with boundary conditions

(λ cosα+ a0) y1(0) + (λ sinα+ b0) y2(0) = 0,

(λ cosβ + a1) y1(π) + (λ sinβ + b1) y2(π) = 0, (2)

where λ is a spectral parameter,

B =

(
0 1
−1 0

)
, Q(x) =

(
V (x) +m 0

0 V (x)−m

)
, y(x) =

(
y1(x)
y2(x)

)
,

(3)
and V is a real valued, continuous function on [0, π]. Furthermore, m, ak, bk(k =
0, 1), α and β are real constants: moreover −π2 ≤ α, β ≤ π

2 [38]. Throughout the
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paper [38], Yang and Pivovarchik supposed that

a0 sinα− b0 cosα > 0,

a1 sinβ − b1 cosβ < 0. (4)

The properties of the eigenvalues and eigenfunctions of the problem (1)-(2) were
studied in [28]. Under the condition (4), the eigenvalues of the problem (1)-(2) are
real and algebraically simple [28]. Considering (3) in (1), we get(

0 1
−1 0

)(
y′1(x)
y′2(x)

)
+

(
V (x) +m 0

0 V (x)−m

)(
y1(x)
y2(x)

)
= λ

(
y1(x)
y2(x)

)
,

and thus, equation (1) is equivalent to a system of two simultaneous first order
differential equations

y′2(x, λ) + [V (x) +m] y1(x, λ)− λy1(x, λ) = 0,

−y′1(x, λ) + [V (x)−m] y2(x, λ)− λy2(x, λ) = 0. (5)

In general, potential function of Dirac system (1) has the following form

Q(x) =

(
p11(x) p12(x)
p21(x) p22(x)

)
,

where pik(x) (i, k = 1, 2) are real valued and continuous functions on [0, π]. For the
case in which p12(x) = p21(x) = 0 and p11(x) = V (x) + m, p22(x) = V (x) − m,
where m is the mass of particle, the system (5) is known in relativistic quantum
theory as a stationary one dimensional Dirac system or first canonical form of Dirac
system [4].
Let y(x, λn) = [y1(x, λn), y2(x, λn)]

T be two dimensional vector eigenfunction of
the Dirac system (1) related to the eigenvalue λ = λn, where T denotes transpose.
Assume that xj,in are the nodal points of i−th component yi(x, λn) of the n−th
eigenfunction y(x, λn), where 0 < x1,i

n < x2,i
n < ... < xn−1,i

n < π. In other words,
yi(x

j,i
n , λn) = 0. Let Ij,in =

(
xj,in , x

j+1,i
n

)
be the j−th nodal domain, and let

lj,in = xj+1,i
n − xj,in ,

be the associated nodal length. For simplicity, we agree that x0,i
n = 0 and x|n|+1−i,i

n =
π.We also define the function jn,i(x) to be the largest index ji such that 0 ≤ xj,in ≤ x
for n > 0 and jn,i(x) to be the largest index ji such that 0 ≤ x ≤ xj,in for n < 0.
Thus, ji = jn,i(x) if and only if x ∈ [xj,in , x

j+1,i
n ) for n > 0 and (xj+1,i

n , xj,in ] for
n < 0 [36].
Denote Λi = {xj,in }, i = 1, 2. Hence, Λ = Λ1 ∪ Λ2 is called the set of all nodal

points of Dirac operator. This set is dense on [0, π] [38]. Throughout this study,
we’ll give all proofs for the first component of the eigenfunction.
The rest of this study is arranged as follows: In remaining part of section 1, we

give some properties of Dirac system and quote some important results to use in
main theorems. In section 2, we obtain some reconstruction formulas for potential
function under different boundary conditions. Finally, we define d0, dΣDir

to prove
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Lipschitz stability of inverse nodal problem. Then, we express Theorem 14 in section
3. By this theorem, we prove the Lipschitz stability of inverse nodal problem for
Dirac operator.
Now, we need to remind some conclusions which are given by [38] to use in our

main results.

Lemma 1. [38] The spectrum of the problem (1)-(2) consists of eigenvalues {λn}n∈Z
which are all real and algebraically simple behave asymptotically as

λn = n− 2 +
v

π
+
c

n
+O

(
1

n2

)
, n→∞, (6)

and

λ−n = −n+
v

π
− c

n
+O

(
1

n2

)
, n→∞,

where

v =

π∫
0

V (t)dt+ β − α,

c =
m2

2
+
m

2π
(sin 2α− sin 2β) +

a0 sinα− b0 cosα

π
− a1 sinβ − b1 cosβ

π
.

Lemma 2. [38] Let y(x, λ) =

(
y1(x, λ)
y2(x, λ)

)
be the solution of (1) satisfying the

condition

y(0, λ) =

(
− (λ sinα+ b0)
λ cosα+ a0

)
, (7)

then, we have

y1(x, λ) = −λ sin

λx− x∫
0

V (t)dt+ α

+
m2

2
x cos

λx− x∫
0

V (t)dt+ α


−m cosα sin

λx− x∫
0

V (t)dt

− a0 sin

λx− x∫
0

V (t)dt

 (8)

− b0 cos

λx− x∫
0

V (t)dt

+O

(
eτx

λ

)
,

and

y2(x, λ) = λ cos

λx− x∫
0

V (t)dt+ α

+
m2

2
x sin

λx− x∫
0

V (t)dt+ α
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+m sinα sin

λx− x∫
0

V (t)dt

+ a0 cos

λx− x∫
0

V (t)dt

 (9)

− b0 sin

λx− x∫
0

V (t)dt

+O

(
eτx

λ

)
,

whereτ = |Imλ| .

Lemma 3. [38] For suffi ciently large n > 0, the first component y1(x, λn) of the
eigenfunction y(x, λn) for Dirac system has exactly N(α, β) nodes in the interval
(0, π) where

N(α, β) =

 n− 2, for α ≥ 0 and β > 0 or for α < 0 and β ≤ 0
n− 3, for α ≥ 0 and β ≤ 0
n− 1, for α < 0 and β > 0.

Moreover, uniformly with respect to j ∈ {1, 2, ..., N(α, β)}, the nodal parame-
ters of the problem (1)-(7) has the following asymptotic formulas, respectively for
suffi ciently large n,

xj,1n =
2λ2

n

2λ2
n −m2

 jπ
λn

+
1

λn

xj,1n∫
0

V (t)dt− α

λn
+
m sin 2α

2λ2
n

+
a0 sinα− b0 cosα

λ2
n

+O

(
1

λ3
n

)]
and

lj,1n =
2λ2

n

2λ2
n −m2

 π

λn
+

1

λn

xj+1,1n∫
xj,1n

V (t)dt+O

(
1

λ3
n

) ,
where n 6= ∓ m√

2
+ 2. Now, we consider the system (1) with boundary conditions

u1(0) cos α̃+ u2(0) sin α̃ = 0,

u1(π) cos β̃ + u2(π) sin β̃ = 0, (10)

where 0 ≤ α̃, β̃ ≤ π, and m is positive in (3). It is well known that the spec-
trum of the system (1) with the boundary conditions (10) includes the eigenvalues
λ̃n, n ∈ Z which are all real and simple, and the sequence {λ̃n} satisfies the classical
asymptotic form [4], [36]

λ̃n = n+
ṽ

π
+
c̃1
n

+O

(
1

n2

)
, (11)
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where

ṽ = β̃ − α̃+

π∫
0

Ṽ (t)dt, c̃1 =
m(sin 2α̃− sin 2β̃) +m2π

2π cos2

 π∫
0

Ṽ (t)dt− α̃+ β̃

 .

Let u(x, λ̃) =
(
u1(x, λ̃), u2(x, λ̃)

)T
be the solution of the system (1) with initial

conditions
u1(0, λ̃) = sin α̃, u2(0, λ̃) = − cos α̃. (12)

Then, by successive approximations method, there hold

u1(x, λ̃) = sin

λ̃x− x∫
0

Ṽ (t)dt+ α̃

− U1

λ̃
+O

(
e|τλ̃|x

λ̃
2

)
,

u2(x, λ̃) = − cos

λ̃x− x∫
0

Ṽ (t)dt+ α̃

− U2

λ̃
+O

(
e|τλ̃|x

λ̃
2

)
, (13)

for large
∣∣∣λ̃∣∣∣ , where [36]

U1(x, λ̃) = −m sin

λ̃x− x∫
0

Ṽ (t)dt

 cos α̃+
m2

2
x cos

λ̃x− x∫
0

Ṽ (t)dt+ α̃

 ,

U2(x, λ̃) = m sin

λ̃x− x∫
0

Ṽ (t)dt

 sin α̃+
m2

2
x sin

λ̃x− x∫
0

Ṽ (t)dt+ α̃

 . (14)

Lemma 4. [36] For suffi ciently large |n| , the i−th component ui(x, λ̃n) of the
eigenfunction u(x, λ̃n) of the problem (1),(2) has exactly |n| + 1 − i nodes in the
interval (0, π). Moreover, the asymptotic formulas for nodal points of first and sec-
ond components of the eigenfunction u(x, λ̃n) as |n| → ∞ uniformly with respect to
j ∈ Z are as following

x̃j,1n =
2λ̃

2

n

2λ̃
2

n − (−1)jm2

 jπ
λ̃n

+
1

λ̃n

x̃j,1n∫
0

Ṽ (t)dt− α̃

λ̃n
+

(−1)jm sin 2α̃

2λ̃
2

n

+O

(
1

λ̃
3

n

) ,
(15)

and

x̃j,2n =
2λ̃

2

n

2λ̃
2

n − (−1)jm2

(j − 1
2

)
π

λ̃n
+

1

λ̃n

x̃j,2n∫
0

Ṽ (t)dt− α̃

λ̃n
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+
(−1)j+1m sin 2α̃

2λ̃
2

n

+O

(
1

λ̃
3

n

)]
(16)

where n 6= ∓ (−1)
j
2m√
2
.The nodal lengths l̃j,1n for the problem (1), (12) have the fol-

lowing asymptotic expansions

l̃j,1n =
π

λ̃n
+

1

λ̃n

x̃j+1,1n∫
x̃j,1n

Ṽ (t)dt+
{(−1)j+1 − (−1)j}m sin 2α̃

2λ̃
2

n

+
{(−1)j+1x̃j+1,1

n − (−1)j x̃j,1n }m2

2λ̃
2

n

+O

(
1

λ̃
3

n

)
.

In case of j = 2k ( or j = 2k + 1), k ∈ Z; we get

l̃j,1n =
2λ̃

2

n

2λ̃
2

n ±m2

 π

λ̃n
+

1

λ̃n

x̃j+1,1n∫
x̃j,1n

Ṽ (t)dt± m sin 2α̃

2λ̃
2

n

+O

(
1

λ̃
3

n

) . (17)

We can easily obtain l̃j,2n similarly as |n| → ∞ by using definition of nodal
lengths and (16). Here, {xj,in }, {x̃j,in }, i = 1, 2 and {λn}, {λ̃n} are the nodal sets
and eigenvalues of the problems (1), (7) and (1), (12), respectively.

Theorem 5. V ∈ L1(0, π). Then, for almost every x ∈ (0, π), with ji = jn,i(x),

lim
n→∞

λn

xj+1,in∫
xj,in

V (t)dt = V (x), lim
n→∞

λn

xj+1,in∫
xj,in

cos(2λnπt)V (t)dt = 0,

where i = 1, 2 and λn = n− 2 for the problem (1), (7). We can express the similar
theorem for the problem (1), (12).

Proof. It can be proved by similar method given in [1]. The fact that the function
V is on the L1(0, π) space is used here. �

Remark 6. [36] {xj,in } ⊂ Λi, {x̃j,in } ⊂ Λ̃i are chosen such that

lim
n→∞

xj,in = x = lim
n→∞

x̃j,in ,

where i = 1, 2 and x ∈ [0, π].

2. Reconstruction of potential function by using nodal points

In this section, we will derive some reconstruction formulas of potential functions
V and Ṽ , where lj,in , l̃

j,i
n and xj,in , x̃

j,i
n are nodal lengths and nodal points for the

problems (1), (7) and (1), (12), respectively. Here, all of our proofs and definitions
will be given for the first component of eigenfunction (That is, for i = 1).
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Theorem 7. Let V, Ṽ ∈ L1[0, π] be the potential functions for Dirac system under
the conditions (7) and (12), respectively. Define Fn by
a) for the problem (1), (7),

Fn(x) = (n− 2)


n−1∑
j=1

[
n− 2− m2

2(n− 2)

]
lj,1n − π

 .

b) for the problem (1), (12),

F̃n(x) = n


n−1∑
j=1

[
n± m2

2n

]
l̃j,in ±

m2

n
x̃j,in − π

 ,

where lj,in = xj+1,i
n − xj,in and l̃j,in = x̃j+1,i

n − x̃j,in (j is odd or even). Then, Fn and
F̃n converge to V and Ṽ pointwisely almost everywhere, respectively and also in L1

sense .Moreover, pointwise convergence holds for all the continuity points of V and
Ṽ .

Proof. a) We will consider the reconstruction formula for the potential function of
the problem (1), (7). Observe that, by Lemma 3, we have

λn
π
lj,1n − 1− m2lj,1n

2λnπ
=

1

π

xj+1,1n∫
xj,1n

V (t)dt+O

(
1

λ2
n

)
,

and

λn

[
lj,1n

(
λn −

m2

2λn

)
− π

]
= λn

xj+1,1n∫
xj,1n

V (t)dt+O

(
1

λn

)
.

Then, by using asymptotic expansions for eigenvalues, we obtain

λn

[
lj,1n

(
λn −

m2

2λn

)
− π

]
=

[
n− 2 +O

(
1

n

)][
lj,1n

(
n− 2 +O

(
1

n

)
− m2

2(n− 2) +O
(

1
n

))− π]

=

[
n− 2 +O

(
1

n

)][
lj,1n

(
n− 2− m2

2(n− 2)
+O

(
1

n

))
− π

]
= (n− 2)

[
lj,1n

(
n− 2− m2

2(n− 2)

)
− π

]
+ o(1).

Hence, to prove Theorem 7 (a), it suffi ces to show Theorem 8.
(b) It can be proved analogously. To complete the proof of Theorem 7 (b), it

suffi ces to express Theorem 9. �
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Theorem 8. The potential function V ∈ L1(0, π) of the problem (1),(7) satisfies

V (x) = lim
n→∞

[
lj,1n λn −m2 l

j,1
n

2λn
− π

]
λn,

for almost every x ∈ (0, π), with j1 = jn,1(x).

Proof. Lemma 3 yields

lj,1n −
m2lj,1n
2λ2

n

=
π

λn
+

xj+1,1n∫
xj,1n

V (t)dt

λn
+O

(
1

λ3
n

)
,

so that [(
lj,1n −

m2lj,1n
2λ2

n

)
λn − π

]
λn = λn

xj+1,1n∫
xj,1n

V (t)dt+O

(
1

λn

)
. (18)

We may assume xj,1n 6= x. By Theorem 5 , if we take limit of both sides of (18)
as n→∞ for almost x ∈ (0, π), we get

V (x) = lim
n→∞

[
lj,1n λn −m2 l

j,1
n

2λn
− π

]
λn.

�

Theorem 9. The potential function Ṽ ∈ L1(0, π) of the problem (1),(12) satisfies

Ṽ (x) = lim
n→∞

[
l̃j,1n λ̃n ±m2 (x̃j,1n + x̃j+1,1

n )

2λ̃n
− π

]
λ̃n ±m sin 2α̃,

for almost every x ∈ (0, π), with j1 = jn,1(x).

Proof. It can be proved by using similar process to Theorem 8. �

3. Main Results

In this section, we solve a Lipschitz stability problem for Dirac operator. Lip-
schitz stability is about a continuity between two metric spaces. So, we have to first
construct these spaces. To show continuity, we use a homeomorphism between these
spaces. Stability problems were studied by many authors [2,39,40]. To solve stabil-
ity problem, we give a main theorem which execute that the inverse nodal problem
for Dirac system is stable with Lipschitz stability. Here and later, we denote the
space of all admissible nodal sequences which converge to V by X =

{
Xk,i
n

}
, where

Lk,in = Xk+1,i
n −Xk,i

n , i = 1, 2.

Definition 10. Let N′ = N − {1}. We denote the space ΩDir of all potential
functions of Dirac system and the space ΣDir of all admissible sequences by
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(i):

ΩDir = {V ∈ L1[0, π] : V is the potential function of the Dirac system},
and ΣDir =The collection of the all double sequences defined as

X =
{
Xk,1
n : k = 1, 2, ..., n;n ∈ N′, 0 < X1,1

n < X2,1
n < ... < Xn−1,1

n < π
}

for each n ∈ N.
(ii): Let X ∈ ΣDir and define X = {Xk,1

n } where Ik,1n =
(
Xk,1
n , Xk+1,1

n

)
. We

say X is quasinodal to some V ∈ L1(0, π) if X is an admissible sequence
of nodes and satisfies (I) and (II) below:

(I) X has the following asymptotics uniformly for k, as n→∞

Xk,1
n =

kπ

n− 2
+O

(
1

n

)
, k = 1, 2, ..., n

for the problem (1), (7). And the sequence

Fn = (n− 2)

{
n−1∑
k=1

[
n− 2− m2

2(n− 2)

]
Lk,1n − π

}
,

converges to V in L1.
(II) For the problem (1), (12), X has below asymptotics uniformly for k, as

n→∞

Xk,1
n =

kπ

n
+O

(
1

n

)
, k = 1, 2, ..., n

and the sequence

Fn = n

{
n−1∑
k=1

[
n± m2

2n

]
Lk,1n ±

m2

n
Xk,1
n − π

}
,

converges to V in L1. X ∈ ΣDir is nodal if X satisfies one of the above asymptotic
behaviours.

We denote ΩDir as a collection of all Dirac operators and the space ΣDir as a
collection of all admissible double sequences of nodes such that related functions are
convergent in L1. A pseudometric dΣDir

on ΣDir will be defined. For convenience,
we will use the notation X for the first component. Essentially, dΣDir

(X,X) is so
close to

d0(X,X) = lim
n→∞

π

[
n− 2− m2

2(n− 2)

] n−1∑
k=1

∣∣∣Lk,1n − Lk,1n ∣∣∣ ,
where n >

m√
2

+ 2 and Lk,1n = Xk+1,1
n −Xk,1

n , L
k,1

n = X
k+1,1

n −Xk,1

n .

If we define X ∼ X if and only if dΣDir
(X,X) = 0, then ∼ is an equivalence

relation on ΣDir and dΣDir
would be a metric for the partition set Σ∗Dir = ΣDir/ ∼ .

Let ΣDir1 ⊂ ΣDir be the subspace of all asymptotically equivalent nodal sequences
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and let Σ∗Dir1 = ΣDir1/ ∼ . Let Φ be a homeomorphism the maps ΩDir onto Σ∗Dir1 .
We will call Φ as a nodal map.

Lemma 11. Let X,X ∈ ΣDir.
a) If X belongs to case I, then

Lk,1n =
π

n− 2
+O

(
1

n

)
, k = 1, 2, ..., n.

If X belongs to case II, then

Lk,1n =
π

n
+O

(
1

n

)
, k = 1, 2, ..., n.

b) χn,k =
∣∣∣Xk,1

n −Xk,1

n

∣∣∣ = O
(

1
n

)
.

c) For all x ∈ (0, π), define Jn,1(x) = maks{k : Xk,1
n ≤ x} so that k = Jn,1(x) if

and only if x ∈ [XJ1,1
n , XJ1+1,1

n ]. Then, for suffi ciently large n,∣∣Jn,1(x)− Jn,1(x)
∣∣ ≤ 1.

Proof. a) For case I, we get

Lk,1n = Xk+1,1
n −Xk,1

n =
π

n− 2
+O

(
1

n

)
,

by using the definition of nodal lengths. Similarly, for the case (II), we obtain

Lk,1n = Xk+1,1
n −Xk,1

n =
π

n
+O

(
1

n

)
.

b) We only consider case I. The other case is similar. By using asymptotic
estimates, we get∣∣χn,k∣∣ =

∣∣∣Xk,1
n −Xk,1

n

∣∣∣ ≤ ∣∣∣∣Xk,1
n − kπ

n− 2

∣∣∣∣+

∣∣∣∣ kπ

n− 2
−Xk,1

n

∣∣∣∣ = O

(
1

n

)
.

c) Fix x ∈ (0, π). Let J1 = Jn,1(x) and J1 = Jn,1(x). Since

XJ1,1
n ≤ x ≤ XJ1+1,1

n ⇒ J1π

n− 2
+O

(
1

n

)
= XJ1,1

n ≤ x ≤ XJ1+1,1
n =

(J1 + 1)π

n− 2
+O

(
1

n

)
,

and

X
J1,1

n ≤ x ≤ XJ1+1,1

n ⇒ J1π

n− 2
+O

(
1

n

)
= X

J1,1

n ≤ x ≤ XJ1+1,1

n =
J1π

n− 2
+O

(
1

n

)
,

when n is large enough, J1 + 1 ≥ J1 and J1 + 1 ≥ J1. Hence, −1 ≤ J1 − J1 ≤ 1,
then

∣∣J1 − J1

∣∣ ≤ 1. �
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Definition 12. Suppose that X,X ∈ ΣDir with Lk,1n and L
k,1

n are their respective
grid lengths. Let

Sn
(
X,X

)
= π

[
n− 2− m2

2(n− 2)

] n−1∑
k=1

∣∣∣Lk,1n − Lk,1n ∣∣∣ . (19)

Define

d0

(
X,X

)
= lim
n→∞

Sn
(
X,X

)
and dΣDir

(
X,X

)
= lim
n→∞

Sn
(
X,X

)
1 + Sn

(
X,X

) .
We get this metric by evaluating

∥∥V − V ∥∥
1
in Theorem 14 This definition was

first made by [1]. Since the function f(x) =
x

1 + x
is monotonic, we have

dΣDir

(
X,X

)
=

d0

(
X,X

)
1 + d0

(
X,X

) ∈ [0, π] ,

admitting that if d0

(
X,X

)
=∞, then dΣDir

(
X,X

)
= 1. Conversely

d0

(
X,X

)
=

dΣDir

(
X,X

)
1− dΣDir

(
X,X

) .
We can easily prove this equality by using Law’s method [1, 2].

Lemma 13. Let X,X ∈ ΣDir.
a) dΣDir

is a pseudometric on ΣDir.
b) If X and X belong to different cases, dΣDir

(
X,X

)
= 1.

Proof. It can be proved similar way with in [1]. While realizing the conditions for
being metric in the first proof, the space of all admissible nodal sequences is used
in the second proof. �

Stability problems for Sturm-Liouville and Hill’s operators were studied in [1,2]
respectively. Now, we prove the stability of the inverse nodal problem for Dirac
operator with Lipschitz stability. The below theorem guarantees the Lipschitz
stability of inverse nodal problem for Dirac operator.

Theorem 14. The metric spaces (ΩDir, ‖.‖1) and
(
Σ∗Dir1/ ∼, dΣDir

)
are home-

omorphic to each other. Here, ∼ is the equivalence relation induced by dΣDir
.

Furthermore ∥∥V − V ∥∥
1

=
dΣDir

(
X,X

)
1− dΣDir

(
X,X

) ,
where dΣDir

(
X,X

)
< 1.
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Proof. By Lemma 13 we only need to consider when X,X ∈ ΣDir belong to same
case. Without loss of generality, let X,X belong to case I. In this case, we should
denote ∥∥V − V ∥∥

1
= d0

(
X,X

)
.

According to the Theorem 7, Fn and Fn converge to V and V , respectively. If
we use the definition of norm in L1 for the functions V and V , we have

∥∥V − V ∥∥
1

= (n− 2)

[
n− 2− m2

2(n− 2)

] π∫
0

∣∣∣∣LJn,1(x),1
n − LJn,1(x),1

n

∣∣∣∣ dx+ o(1).

Hence by Fatou’s Lemma,

∥∥V − V ∥∥
1
≤ (n− 2)

[
n− 2− m2

2(n− 2)

] π∫
0

∣∣∣LJn,1(x),1
n − LJn,1(x),1

n

∣∣∣ dx
+ (n− 2)

[
n− 2− m2

2(n− 2)

] π∫
0

∣∣∣∣LJn,1(x),1

n − LJn,1(x),1

n

∣∣∣∣ dx. (20)

Here, first and second terms can be written as

π∫
0

∣∣∣LJn,1(x),1
n − LJn,1(x),1

n

∣∣∣ dx =
π

n− 2

n−1∑
k=1

∣∣∣Lk,1n − Lk,1n ∣∣∣+ o

(
1

n2

)
,

and
π∫

0

∣∣∣∣LJn,1(x),1

n − LJn,1(x),1

n

∣∣∣∣ dx = o

(
1

n3

)
.

If we consider last equalities in (20), we get∥∥V − V ∥∥
1
≤ (n− 2)

[
n− 2− m2

2(n− 2)

]
o

(
1

n3

)
+ (n− 2)

[
n− 2− m2

2(n− 2)

] [
π

n− 2

n−1∑
k=1

∣∣∣Lk,1n − Lk,1n ∣∣∣+ o

(
1

n2

)]
,

and ∥∥V − V ∥∥
1
≤ π

[
n− 2− m2

2(n− 2)

] n−1∑
k=1

∣∣∣Lk,1n − Lk,1n ∣∣∣+ o(1). (21)

Similarly, we can get

∥∥V − V ∥∥
1
≥ π

[
n− 2− m2

2(n− 2)

] n−1∑
k=1

∣∣∣Lk,1n − Lk,1n ∣∣∣+ o(1). (22)
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If we consider (21) and (22) together, we obtain∥∥V − V ∥∥
1

= π

[
n− 2− m2

2(n− 2)

] n−1∑
k=1

∣∣∣Lk,1n − Lk,1n ∣∣∣ .
The proof is complete after taking the limit as n→∞. �

4. Conclusion

In this study, Lipschitz stability of inverse nodal problem is proved for Dirac
operator by using zeros of the first component function of two dimensional vec-
tor eigenfunction. Proofs are made for the first component of the eigenfunction
throughout the study. Such a way was followed, since the proofs for the second
component have similar behavior. Especially, two metric spaces were defined and
it was shown that they were homeomorphic to each other. These results are new
and can be generalized.
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