PAPER DETAILS

TITLE: The Characterization of Schwarz theorem and unit discs

AUTHORS: Muhammet KAMALI

PAGES: 0-0

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/1641759

THE CHARACTERIZATION OF SCHWARZ THEOREM AND UNIT DISCS

MUHAMMET KAMALI -- MUSTAFA BAYRAKTAR

Atatürk University, Faculty of Sciences and Arts, Department of Mathematics, Erzurum, TURKEY.

(Received Nov. 30, 1993; Accepted July 17, 1994)

ABSTRACT

Let $\tilde{D} = \{z \in C: |z| \le r\}$ be a set and $A(\tilde{D})$ be an algebra of bounded analytic functions on \tilde{D} . In this paper taking complex algebra R, we gave the characterization of Schwarz theorem. In the special case r = 1, we obtained the characterization of Schwarz lemma. Taking $a \in R$ that satisfies some conditions we gave algebraic characterization of conformal mapping from \tilde{D} to \tilde{U} , where $\tilde{U} = \{w \in C: |w| \le 1\}$, and investigate the case r = 1.

INTRODUCTION

This paper presents a solution to problem in subject of rings of analytic functions. In late 1940's, it was shown that two domains; D_1 and D_2 in the complex plane, are conformally equivalent iff the rings $B(D_1)$ and $B(D_2)$ of all bounded analytic functions defined on them are algebraically isomorphic. Let R be a ring. It is well know that if R is isomorphic with the ring of bounded analytic functions on an annulus $A = \{z \in C: \rho_1 < |z| < \rho_2\}$, where ρ_1 and ρ_2 are unknown, then it deduces the number ρ_1 / ρ_2 from the ring R [2].

In our study we have taken the known ring and given some algebraic characterizations.

ALGEBRAIC CHARACTERIZATIONS

Let \emptyset be an isomorphism mapping $B(\overline{D})$ onto R. We will denote elements of $B(\overline{D})$ by f, g, f,... and elements of R by a, b, c.... Let e and 1 be multiplicative identy of R and $B(\overline{D})$, respectively. Thus, $1 \in$ $B(\overline{D})$ is the function identically equal to 1 on \overline{D} . Since $\emptyset : B(\overline{D}) \rightarrow R$ is an isomorphism, \emptyset (1) = e. Furthermore \emptyset (n1) = ne, so that \emptyset (\pm (m/n). 1) = \pm (m/n) e. –e has two square roots in R,one is the image of i. 1, the other is the image of -i. 1. It is algebraically impossible to distinguish between these, since R has an automorphism which takes one into the other (corresponding to the mapping $f \rightarrow \overline{f} \in B(\overline{D})$). Thus, we choose one root of -e and make it which correspond to i.1; denote it as ie.

Henceforth, we will denote the complex number field by C and the complex rational number field by C_r . Where a complex number, both real and imaginary parts are real rationals, is called a complex rational number. Clearly, C_r and C are subrings of $B(\bar{D})$.

Lemma 2.1. For each $\alpha \in C_r$, \emptyset (α) = α (or $\overline{\alpha}$).

Proof: If $\alpha \in C_r$, there are the rational numbers r_1 and r_2 such that $\alpha = r_1 + ir_2$. Since \emptyset (1) = e and \emptyset (i) = i(or - i), we get \emptyset [($r_1 + ir_2$). 1] = $r_1e + r_2ie$ (or $r_1e - r_2ie$), ([3], [4]).

Lemma 2.2. For each real number c, \emptyset (c1) = ce.

Proof: If c is a rational number, by the Lemma (2.1), \emptyset (cl) = ce. If c is an irrational number, for each rational number c, $c - r \neq 0$.

Thus there exist
$$(c-r)^{-1} = \frac{1}{c-r}$$
. Then \varnothing $[(c-r), 1] = \varnothing$ $(c1) - re$

and
$$\varnothing \left[\left(\frac{1}{\mathbf{c}-\mathbf{r}}\right),1\right] = \frac{\mathbf{e}}{(\varnothing \ (\mathbf{c}\mathbf{l})-\mathbf{r}\mathbf{e}}$$
. Therefore $\varnothing \ (\mathbf{c}\mathbf{l}) = \mathbf{c}\mathbf{e}$.

Corollary 2.3. If $c \in C$, \emptyset (c1) = ce, [2].

Lemma 2.4. Let $f \in B(\overline{D})$ and let \overline{R}_f be the closed range of f. Then $\lambda \in \overline{R}_f$ iff $f - \lambda I$ has no inverse in $B(\overline{D})$.

Proof: If $\lambda \in \overline{\mathbb{R}}_{f}$ there is $z_{0} \in \overline{\mathbb{D}}$ such that $f(z_{0}) = \lambda$. Then $(f - \lambda l)(z_{0}) = 0$. Hence $f - \lambda l$ has no inverse in $B(\overline{\mathbb{D}})$. Now we suppose that $f - \lambda l$ has no inverse in $B(\overline{\mathbb{D}})$. Then at least for one point $z_{0} \in \overline{\mathbb{D}}$, $(f - \lambda l)(z_{0}) = 0$. If follows that $f(z_{0}) = \lambda$, i.e. $\lambda \in \overline{\mathbb{R}}_{f}$.

Lemma 2.5. $\lambda \in \overline{R}_{f}$ iff \emptyset (f) $-\lambda e$ has no inverse in R.

Proof: If $\lambda \otimes \bar{R}_{f}$, $f - \lambda l$ has no inverse in $B(\bar{D})$ by Lemma 2.4. Since \emptyset is an isomorphism, $\emptyset (f - \lambda l) = \emptyset (f) - \lambda e$ has no inverse in R, [1]

Let σ (f) and σ (a) be spectrum of $f \in B(\overline{D})$ and $a \in R$ respectively. If

$$\rho(\mathbf{a}) = \sup \{ |\lambda| : \lambda \in \sigma(\mathbf{a}) \},\$$

then ρ (a) is also the maximum modulus (Hereinafter abbreviated MM) of $\emptyset^{-1}(a)$.

In this paper, we always consider complex algebra. Now we give first our theorem connected with algebraic characterization.

Theorem 2.6. Let R be a complex algebra, a, b, $c \in R$ and \emptyset : B(\overline{D}) $\rightarrow R$ be a C-isomorphism. If $\emptyset^{-1}(b) = z$, then $\rho(a) = M$ algebraicly characterizes Schwarz Theorem.

Proof: Let $\emptyset^{-1}(c) = \varphi(z)$, where b, $c \in \mathbb{R}$ and a = b.c. Then $\emptyset^{-1}(a) = f(z)$. Since $\emptyset^{-1}(a) = \emptyset^{-1}(b) \ \emptyset^{-1}(c)$, we obtain $f(z) = z.\varphi(z)$. We can write from here

$$\phi(z) = \frac{f(z)}{z} \ ,$$

for $z \neq 0$.

For $\varphi(z)$ to be in $B(\overline{D})$, f(z) must be zero at z = 0, i.e f(0) = 0. Because, as f(0) = 0 the point z = 0 is a removable singular point for the function $\varphi(z)$. Hence, for each z, $\varphi(z) \in B(\overline{D})$. By the maximum modulus principle in a disk that concentric with \overline{D} and has a radii k < r,

$$| \varphi(\mathbf{z}) | \leq rac{M}{k} \, ,$$

because $\rho(\mathbf{a}) = \mathbf{M}\mathbf{M} \ (\varnothing^{-1}(\mathbf{a})) = \mathbf{M}$. It follows from that for $\mathbf{k} \rightarrow \mathbf{r}$

$$|\varphi(z)| \leq rac{M}{r}$$

that is,

$$| f(z) | \le rac{M}{r} | z |.$$

If we take M = 1 and r = 1 as a result of Theorem 2.6, we obtain an algebraic characterization of Schwarz Lemma. More clearly,

Corollary 2.7. Let R be complex algebra a, b, $c \in R$ and \emptyset : B(\overline{U}) \rightarrow R be C-isomorphism. If $\emptyset^{-1}(b) = z$, then $\rho(a) = 1$ algebraicly characterizes Schwarz Lemma.

Another result of Theorem 2.6 is the following.

Corollary 2.8. Let $B(\overline{D})$ be a complex algebra of the bounded analytic functions on \overline{D} and $f \in B(\overline{D})$ be schlicht. Furthermore suppose that f(0) = 0 and MM(f) = 1. Then,

$$f(z) = \frac{1}{r} \exp i\theta$$
. z

where $\mathbf{\tilde{D}} = \{ \mathbf{z} \in \mathbf{C} \colon | \mathbf{z} | \leq \mathbf{r} \}.$

Proof: Since w = f(z) schlicht, $z = f^{-1}(w) \in B(\ddot{U})$. Then, we deduce

$$| f(z) | \leq rac{M}{r} | z |$$

by the Schwarz Theorem.

Since f is the function from \overline{D} to \overline{U} , we obtain

$$| f(z) | \le \frac{1}{r} | z |$$

for M = 1 and hence $r |w| \le |z|$.

Conversely, since the mapping $z = f^{-1}(w)$ maps the closed unity ball to \bar{D} , M = r and r = 1. Thus,

$$|\mathbf{f}^{-1}(\mathbf{w})| \leq \frac{\mathbf{r}}{1} \cdot |\mathbf{w}|$$

and from here we get $\mid z \mid \leq r \mid w \mid$. We find $r \mid w \mid = \mid z \mid$ from both inequalities or

$$|\frac{\mathrm{w}}{\mathrm{z}}| = \frac{1}{\mathrm{r}}.$$

If follows for that

$$f(z) = \frac{1}{r} \exp i\theta. z$$

The mapping $f(z) = \frac{1}{r} \exp i\theta$. z maps \overline{D} to \overline{U} such that f(0) = 0.

Now we will give an algebraic characterization of f which maps conformally \overline{D} onto \overline{U} such that $f(\alpha) = 0$, where α is interior point of \overline{D} .

We need the following Lemma.

Lemma 2.9. Let $\alpha \in \overline{D}$ be. Suppose that $f \in B(\overline{D})$ satisfies the following conditions.

Then,

$$f(z) = \lambda. \frac{z-\alpha}{r^2-\bar{\alpha}z},$$
 (2.9.1)

where $|\lambda| = r$ and $\overline{D} = \{z \in C : |z| \le r\}$.

Proof: $I_{\alpha} = \{f \in B(\overline{D}): f(\alpha) = 0\}$ is the maximal ideal of $B(\overline{D})$. I_{α} is generated by $h(z) = z - \alpha$, i.e., $I_{\alpha} = \langle z - \alpha \rangle$. The function that we are looking for must be in I_{α} . If $\alpha = 0$, by Corollary 2.8 $f(z) = \lambda$. $\frac{z}{r^2}$. If $\alpha \neq 0$, for any z in \overline{D} MM $(z - \alpha) \neq 1$. Therefore $f(z) \neq z - \alpha$. If $f(z) = (z - \alpha)$ g (z), $f(\alpha) = 0$ and MM(f) = 1, then g(z)must be $\frac{\lambda}{r^2 - \overline{\alpha}z}$, where $r = |\lambda|$. Thus

$$f(z) = \lambda. \quad \frac{z-\alpha}{r^2 - \bar{\alpha} z},$$

where $r = |\lambda|$.

Furthermore if f is schlicht, $f(\alpha) = 0$ and MM(f) = 1, then this function must be in the form of (2.9.1), [5].

Theorem 2.10. Let R be any algebra such that \emptyset is an isomorphism from B(D) to R. Furthermore, suppose that the following conditions are satisfied for some $a \in R$.

a) For each $\lambda \in \sigma(a) = \overline{U}$, there is only one point z_0 .

b) For each α ∈ C, < b - αe > is a maximal ideal of R. Furthermore, Ø⁻¹(b) = z and a ∈ < b - αe >, where b ∈ R.
c) ρ(a) = MM (Ø⁻¹(a)) = 1.

Then $\emptyset^{-1}(a)$ is a conformally mapping from \overline{D} to \overline{U} and

$$arnothing = \lambda \, rac{\mathbf{z} - oldsymbol{lpha}}{\mathbf{r}^2 - oldsymbol{ar{lpha}} \mathbf{z}} \; ,$$

| = r.

where $|\lambda| = r$.

Proof: Since $a \in \langle b - \alpha e \rangle$, there is an element $c \in \mathbb{R}$ such that $(b - \alpha e) c = a$. Since \emptyset is isomorphism, we can write $\emptyset^{-1}(a) = \emptyset^{-1}$ $(b - \alpha e)$. $\emptyset^{-1}(c)$ and $\emptyset^{-1}(a) = \{\emptyset^{-1}(b) - \emptyset^{-1}(\alpha e)\} \emptyset^{-1}(c)$. Thus we find

$$\varnothing^{-1}(\mathbf{a}) = (\mathbf{z} - \alpha) \ \varnothing^{-1}(\mathbf{c}).$$

By the Lemma 2.9, MM $(\emptyset^{-1}(\mathbf{a})) = 1$ and hence

$$\emptyset^{-1}(\mathbf{c}) = \frac{\lambda}{\mathbf{r}^2 - \bar{\alpha}\mathbf{z}}$$

Clearly, $\emptyset^{-1}(c) \in B(\overline{D})$. We obtain

 $\mathbf{c} = rac{arnothing \left(\mathbf{\lambda}
ight)}{arnothing \left(\mathbf{r}^2
ight) - arnothing \left(\mathbf{ar lpha} \mathbf{z}
ight)} = rac{\lambda \mathbf{e}}{\mathrm{rere} - \mathbf{ar lpha} \mathrm{ebe}}$

from the equality and so $c \in R$. Thus

$$\mathbf{a} = (\mathbf{b} - \alpha \mathbf{e}). \quad \frac{\lambda \mathbf{e}}{\mathbf{r}^2 \mathbf{e} - \bar{\alpha} \mathbf{e} \mathbf{b} \mathbf{e}} \in (\mathbf{b} - \alpha \mathbf{e})$$

and we deduce the mapping

$$\emptyset^{-1}(\mathbf{a}) = \lambda \frac{\mathbf{z} - \alpha}{\mathbf{r}^2 - \bar{\alpha}\mathbf{z}}$$

It is well know that this is the mapping from \overline{D} onto \overline{U} . At the same time, the mapping $\varnothing^{-1}(a)$ is unique. Because, $\lambda_0 \in \overline{R} \oslash^{-1}(a)$, by $\lambda_0 \in \sigma$ (a). Since each a point $\overline{R} \oslash^{-1}(a)$ correspond to unique z_i by the Lemma 2.4 and (a), $\varnothing^{-1}(a) \in B(\overline{D})$ is one -to-one. Since \varnothing is an isomorphism and $< b - \alpha e >$ is maximal principal ideal in R, $\varnothing^{-1}(b - \alpha e)$ is a maximal principal ideal in B(\overline{D}). This maximal principal ideal is generated by the $\varnothing^{-1}(b) - \varnothing^{-1}(\alpha e) = z - \alpha$. Then $\varnothing^{-1}(a) \in z - \alpha > by$ (b). $\varnothing^{-1}(a)$ is schlicht. Thus

$$\emptyset \overline{1}^{1}(\mathbf{a}) = \lambda \frac{\mathbf{z} - \alpha}{\mathbf{r}^{2} - \overline{\alpha}\mathbf{z}},$$

by Lemma 2.9.

Corollary 2.11. Let R be any algebra and $\emptyset : B(\overline{U}) \rightarrow R$ be a C-isomorphism. Furthermore suppose that the following conditions hold.

- a) For each $\lambda_0 \in \sigma(a) = \overline{U}$, there is an unique $z_0 \in \overline{U}$.
- b) For ecah $\alpha \in C$, $\langle b \alpha e \rangle$ is maximal ideal of R, where $b \in R$, $\emptyset^{-1}(b) = z$ and $a \in \langle b \alpha e \rangle$.

c) $\rho(a) = MM (\emptyset^{-1}(a)) = 1.$

Then $\emptyset^{-1}(a)$ is conformally mapping from \overline{U} onto U and

$$\varnothing^{-1}(\mathbf{a}) = \lambda \quad \frac{\mathbf{z} - \alpha}{1 - \bar{\alpha}\mathbf{z}}, \quad (|\lambda| = 1).$$

Proof: This corollary is the special case of Theorem 2.10 for r = 1.

REFERENCES

- BAYRAKTAR, M., Üst yarı düzlemin birim daireye konform tasvirinin cebirsel karekterizasyonu, Journal of Mathematics and Statistics of the Faculty of Arts and Science, Gazi University, Volume 2, (1989), s. 111-116.
- [2] BECK, A., On Ring on Ring, Proc. Amer Math. Soc. 15 (1964), s. 350-353.
- [3] BERS, L., On Rings of Analytic Functions, Bull. Amer. Math. Soc. 54 (1948), s. 311-315.
- [4] KAKUTANI, S., Rings of Analytic Functions, Proc. Michigan Conference on Functions of a Complex Variable, (1955), s. 71-84.
- [5] KODAIRA, K., Introduction to Complex Analysis, Cambridge University Press-Cambridge, (1977). p. 117-133.