PAPER DETAILS

TITLE: On the Sheaf Hn of higher homotopy groups as an abelian covering space

AUTHORS: S BALCI

PAGES: 0-0

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/1642757

Commun. Fac. Sci. Univ. Ank. Series A1 V. 47. pp. 35-44 (1998)

ON THE SHEAF H_n OF HIGHER HOMOTOPY GROUPS AS AN ABELIAN COVERING SPACE

S. BALCI and E. GÜNER

Department of Mathematics, University of Ankara, Ankara, TURKEY

(Received Oct. 31, 1997; Revised March 20, 1998; Accepted April 3, 1998)

ABSTRACT

Let X be a connected and locally path connected topological space. Constructing the sheaf H_n of higher homotopy groups on X, its some characterizations are examined. Also, it is shown that H is a regular covering space as a sheaf of abelian groups. Finally, it is given "General Lifting Theorem" for the sheaf H and constructing the Quotient Sheaf $Q_{H'_n}$ for any group subsheaf H' of the sheaf H is shown that $Q_{H'_n}$ is a covering space as a sheaf of abelian groups.

1. INTRODUCTION

Let X be a connected and locally path connected topological space. Then, X is a path connected. For an arbitrary fixed point $c \in X$, we will consider X as a pointed topological space (X, c) unless otherwise stated. Let x be any point of X and $\pi_n(X, x)$ be higher homotopy groups of X with respect to x and

$$H_n = \bigvee_{x \in X} \pi_n(X, x) \ .$$

Clearly, H_n is a set over X and the mapping $\Psi: H_n \to X$ defined by $\Psi(\sigma_x) = x$ for any $\sigma_x \in (H_n)_x \subset H_n$, is an onto projection.

We introduce on H_n a natural topology as follows: Let x_0 an arbitrary fixed point of X, $W = W(x_0)$ be a path connected open neighborhood of x_0 and $\sigma_{x_0} = [\alpha]_{x_0}$ be a homotopy class of $(H_n)_{x_0}$. Since X path connected, there exists a path γ with initial point x_0 and with terminal point x, for every $x \in W$. Therefore, the path γ determines an isomorphism $\gamma^* : (H_n)_{x_0} \to (H_n)_x$ defined by $\gamma^*([\alpha]_{x_0}) = [\beta]_x$ for any $[\alpha]_{x_0} \in (H_n)_{x_0} \subset H_n$. Let us now define a mapping $s : W \to H_n$ such that

 $s(x) = \gamma^*([\alpha]_{x_0}) = [\beta]_x$ for every $x \in W$. If $c \in W$, then we define $s(c) = \gamma^*([\alpha]_c) = [\alpha]_c$, by taking $[\gamma] = [1] \in (H_n)_c$. It is seen that, the mapping s depends on both the homotopy classes $[\alpha]_{x_0}$ and $[\gamma]$. Suppose that the homotopy class $[\gamma]$ is choosen as arbitrary fixed, for each $x \in W$. So, the mapping s depends on only the homotopy class $[\alpha]_{x_0}$. s is well-defined and $\Psi os = 1_W$. Let us denote the totality of the mapping s defined over W by $\Gamma(W, H_n)$.

Let B a basis of path conneted open neighborhoods for each $x \in X$. Then,

$$\mathbf{T} = \{\mathbf{s}(\mathbf{W}) : \mathbf{W} \in \mathbf{B}, \mathbf{s} \in \Gamma(\mathbf{W}, \mathbf{H})\}$$

is a topology - base on $H_n[4, 10]$. In this topology the mapping Ψ and s are continuous. Moreover Ψ is a local topological mapping and the mapping s is a local invers of Ψ . Because;

1. Let $\sigma_{x_0} \in H_n$. Then $\Psi(\sigma_{x_0}) = x_0 \in X$. If $W = W(x_0)$ is an open set, then $W = \bigcup_{i \in I} W_i$, where each $W_i \in B$. So, for each W_i , there exists a mapping $s_i : W_i \to H_n$ such that $\Psi os_i = 1_{W_i}$ and $s_i(W_i) \in T_n$.

Let us now define a mapping $s:W\to H_n$ such that $s|W_i=s_i,$ for each $W_i.$ Thus

$$s(W) = \bigcup_{i \in I} s_i(W_i)$$

is an open set in H_n and Ψ os = 1_W. Write s(W) = U. Since Ψ os = 1_W, so Ψ = 1₁, then Ψ |U : U \rightarrow W is bijective and (Ψ |U)⁻¹ = s.

2. The topologies on U and W are subspace topologies obtained from H_n and X, respectively. Let $W' \subset W$ be an open set. It can be written that

$$\mathbf{W'} = \bigcup_{i \in \mathbf{I}} \mathbf{W'}_i$$

such that $W'_{i} = W'_{i} \cap W'$ for any $i \in I$. Now, if we define a mapping

$$s'_{i}: W'_{i} \rightarrow U$$

such that $s'_{i} = s_{i} | W'_{i}$, for each W'_{i} , then we can define a mapping

$$s': W' \rightarrow U$$

such that $s'|W'_i = s'_i$. So,

$$s'(W') = \bigcup_{i \in I} s'_i(W'_i) \subset U$$

is an open set. Hence $\Psi|U$ is a continuous mapping. On the other hand, if $U' \subset U$ is an open set, then

$$\mathbf{U'} = \bigcup_{i \in \mathbf{I}} \mathbf{s'_i}(\mathbf{W'_i})$$

Hence

$$\Psi(\mathbf{U'}) = \bigcup_{i \in 1} \mathbf{W'}_i \subset \mathbf{W}$$

is an open set. Thus, the mapping $s\,:\,W\,\rightarrow\,U$ is continuous.

Therefore (H_n, Ψ) is a sheaf over X. It is called "the sheaf of higher homotopy groups" [6]. s is called a section over W and the set of totality of sections over W is $\Gamma(W, H_n)$. The $(H_n)_x = \pi_n(X, x)$ is called the stalk of the sheaf H for any $x \in X$. The group $(H_n)_x = \pi_n(X, x), n > 1$, is commutative for every $x \in X$. The set $\Gamma(W, H_n)$ is a group with pointwise multiplication operation. Thus, the operation.: $H_n \oplus H_n \to H_n$ is continuous for every stalk of H_n [1]. Hence, H_n is a sheaf of abelian groups.

2. CHARACTERISTIC FEATURES OF H [3]

* Every section over an open set W can be extended to a section over X. In other words, the sections over W are the restrictions of the sections over X, i.e., $\Gamma(W, H_n) = \Gamma(s|W, H_n)$, $s \in \Gamma(X, H_n)$. A section over X is called a global section.

* All of the stalks of the sheaf H_a over X are isomorphic.

* Let $W \subset X$ be an open set and s_1 , s_2 be any two sections in $\Gamma(W, H_n)$. If $s_1(x_0) = s_2(x_0)$ for any $x_0 \in W$, then $s_1(x) = s_2(x)$ for each $x \in W$.

* Let $W_1, W_2 \subset X$ be any two open sets in X, $W_1 \cap W_2 \neq \emptyset$ and $s_1 \in \Gamma(W_1, H_n), s_2 \in \Gamma(W_2, H_n)$. If $s_1(x_0) = s_2(x_0)$ for any $x_0 \in W_1 \cap W_2$, then $s_1(x) = s_2(x)$, for every $x \in W_1 \cap W_2$.

3. THE SHEAF H_n AS A COVERING SPACE

Now, we shall prove that, H_n is a regular covering space of X.

Theorem 3.1. Let H_n be the sheaf of abelian groups over (X, c) and W be an open set in X. Then

 $(\mathbf{H}_{n})_{c} \cong \Gamma(\mathbf{W}, \mathbf{H}_{n}).$

Proof. Let $W \subset X$ be an open set and $s \in \Gamma(W, H_n)$. Then, there exists a unique element $\sigma_c = [\alpha]_c \subset (H_n)_c$ such that

$$s(x) = \gamma^*([\alpha]) = [\beta]$$

for every $x \in W$. That is, to each element of $(H_n)_c$, there correspondence only one element in $\Gamma(W, H_n)$. Let us denote this correspondence by Φ : $(H_n)_c \rightarrow \Gamma(W, H_n)$ such that $\Phi(\sigma_c) = s$ for any $\sigma_c \in (H_n)_c$. Let $\sigma_c^1 = [\alpha_1]_c$, $\sigma_c^2 = [\alpha_2]_c \in (H_n)_c$ and σ_c^1 , σ_c^2 determine the sections $s_1, s_2 \in \Gamma(W, H_n)$, respectively. Then

$$s_1(x) = \gamma^*([\alpha_1]_c) = [\beta_1]_x$$

and

$$s_2(\mathbf{x}) = \gamma^*([\alpha_2]_c) = [\beta_2]$$

for every $x \in W$. Then $s_1(x) \neq s_2(x)$, if $\sigma_c^1 \neq \sigma_c^2$. So Φ is one to one. As a result of the definition of Φ , Φ is onto. Thus Φ is a bijection.

 Φ is a homomorphism. Because, if $\sigma_c^1 = [\alpha_1]_c$, $\sigma_c^2 = [\alpha_2]_c \in (H_n)_c$, then $\sigma_c^{1.} \sigma_c^2 = [\alpha_1 \alpha_2]_c$. So the element $\sigma_c^{1.} \sigma_c^2 \in (H_n)_c$ defines a section $s \in \Gamma(W, H_n)$ such that

$$s(x) = (s_1 \cdot s_2)(x) = \gamma^*([\alpha_1 \cdot \alpha_2]_c) = [\beta_1 \cdot \beta_2]_x$$

for every $x \in W$. On the other hand for every $x \in W$,

$$s_{1}(\mathbf{x}).s_{2}(\mathbf{x}) = \gamma^{*}([\alpha_{1}]_{c}).\gamma^{*}([\alpha_{2}]_{c})$$
$$= \gamma^{*}([\alpha_{1}]_{c} [\alpha_{2}]_{c})$$
$$= \gamma^{*}([\alpha_{1}.\alpha_{2}]_{c})$$
$$= [\beta_{1}.\beta_{2}]_{\mathbf{x}} .$$

Thus

$$\Phi(\sigma_{c}^{1}.\sigma_{c}^{2}) = s_{1}s_{2} = \Phi(\sigma_{c}^{1}). \Phi(\sigma_{c}^{2})$$

Therefore, Φ is an isomorphism.

We can state as a results of Theorem 3.1. that, the stalk $(H_n)_c$ completely determines the group of sections over W. In particular, if we take W = X, then the stalk $(H_n)_c$ completely determines the group of global sections over X.

Now we can state the following corollary [2].

Corollary. Let H_n be the sheaf of abelian groups over X. $(H_n)_x$ be the stalk over the point $x \in X$ and W = W(x) be an open set. Then, $(H_n)_x \cong \Gamma(W, H_n)$. Particularly, $(H_n)_x \cong \Gamma(X, H_n)$.

According to this corollary, we can say that, if $\sigma_x \in (H_n)_x$ is any element and W = W(x) is an open set in X, then there is a unique section $s \in \Gamma(W, H_n)$ such that $s(x) = \sigma_y$. Since

 $\Psi|s(W)\,:\,s(W)\,\to\,W$

is a topological mapping and $s = (\Psi|s(W))^{-1}$,

$$\Psi^{-1}(W) = \bigvee_{i \in I} s_i(W), s_i \in \Gamma(W, H_n)$$

and

$$\Psi|s_{i}(W) : s_{i}(W) \to W$$

is a topological mapping. So, the open set W = W(x) is evenly covered by Ψ . Thus Ψ is a covering projection and (H_n, Ψ) is a covering space of X [7,8,9]. Moreover, (H_n, Ψ) is an abelian covering space of X.

Now, let $x_0 \in X$ be any point and γ be an arc with initial point x_0 , Then, the mapping

soy : I \rightarrow H

is a continuous mapping and Ψ o (soy) = γ . If we write (soy)(x_0) = $\rho_{x_0} \in (H_n)_{x_0}$, then soy is a lifting of γ from the initial point ρ_{x_0} over x_0 in H_n .

Write so $\gamma = \gamma^*$, then γ^* is unique, because the mapping $\Psi|s(X)$: $s(X) \to X$ is a homeomorphism.

We can then state the following theorem.

Theorem 3.2. Let (H_n, Ψ) be the sheaf of abelian groups over X, $x_0 \in X$ be any point and γ be a path with initial point x_0 in X. Then, γ has a unique lifting γ^* with initial point ρ_{x_0} in H_n , for $\rho_{x_0} \in (H_n)_{x_0}$.

Now, we give the following theorem.

Theorem 3.3. (Monodromy). Let (H_n, Ψ) be the sheaf of abelian groups over X and suppose that γ_1^* and γ_2^* are paths with common initial point ρ_x and terminal point ρ_x in H_n . Then, γ_1^* and γ_2^* are homotopic path in H_n if and only if $\Psi o \gamma_1^*$ and $\Psi o \gamma_2^*$ are homotopic paths in X.

Proof. If γ_1^* is homotopic to γ_2^* by a homotopy G, then $\Psi \circ G$ is a homotopy between $\Psi \circ \gamma_1^*$ and $\Psi \circ \gamma_2^*$. For a proof of the other half of the theorem, let x_0 and x_1 denote the common initial point and common terminal point $\Psi \circ \gamma_1^*$ and $\Psi \circ \gamma_2^*$, respectively. Let $H : I \times J \to X$ be a homotopy between $\Psi \circ \gamma_1^*$ and $\Psi \circ \gamma_2^*$. On the other hand, if $\rho_{x_0} \in (H_n)$, then there is a unique section $s \in \Gamma(X, H_n)$ such that $s(x_0) = \rho_{x_0}^*$. So,

$$so(\Psi o \gamma_1^*) = \gamma_1^*$$

and

 $so(\Psi o \gamma_2^*) = \gamma_2^*$

Furthermore, so H is a homotopy between γ_1^* and γ_2^* .

Theorem 3.4. Let (H_n, Ψ) be the sheaf of abelian groups over X, $x_0 \in X$ be an arbitrary fixed point and $\rho_{x_0} \in (H_n)_{x_0}$ be any point. Then the fundamental group of H_n with respect to ρ_{x_0} is isomorphic to $(H_n)_{x_0}$.

From theorems 3.3. and 3.4, (H_n, Ψ) is a regular covering space of X.

Now, we give "General Lifting Theorem" for the sheaf H.

Theorem 3.5. Let $X = (X, x_0)$, $Y = (Y, y_0)$ be two connected and locally path connected topological space (or two Riemann spaces), (H_1, Ψ)

41

be the sheaf of abelian groups over the pointed topological space (X, x_0) , $\rho_{x_0} \in \Psi^{-1}(x_0)$ be any point. If

 $f: (Y, y_0) \rightarrow (X, x_0)$

be any continuous mapping, then f can be lifted to a unique continuous

$$f^*: (Y, y_0) \to (H_n, \rho_{x_0})$$

such that $\Psi of = f^*$.

Proof. Let $f : (Y, y_0) \to (X, x_0)$ be a continuous mapping. Then $f(y_0) = x_0$. If $\rho_{x_0} \in \Psi^1(x_0)$ any point, then there exists a unique section $s \in \Gamma(X, H_n)$ such that $s(x_0) = \rho_{x_0}$. Thus

sof :
$$(Y, y_0) \rightarrow (H_n, \rho_x)$$

is a continuous mapping and

 $\Psi o(sof) = f$

So, sof is a lifting of f to H_n . Let us denote sof by f^* . f^* is unique, because the section s is unique.

We can now state the following theorem.

Theorem 3.6. Let $X = (X, x_0)$, $Y = (Y, y_0)$ be two connected and locally path connected topological space (or two Riemann Surfaces), (H, Ψ) be the sheaf of abelian groups over the pointed topological space (X, x_0), $\rho_{x_0} \in \Psi^{-1}(x_0)$ be any point and

 $f^*, g^* : (Y, y_0) \to (H_n, \rho_n)$

be any two continuous mappings such that $\Psi of^* = \Psi og^*$, then

 $f^* = g^*$.

Proof. This is a result of Theorem 3.5.

4. SUBSHEAVES AND QUOTIENT SHEAVES OF H_.

In this section, Constructing the Quotient sheaf $Q_{H'_n}$, for any subsheaf of the groups H'_n of the sheaf H_n , it is shown that $Q_{H'_n}$ is covering space as a sheaf of abelian groups.

We begin by giving the following definition [5].

Definition 4.1. Let H_n be the sheaf of abelian groups over X and $H'_n \subset H_n$ be an open set. Then H'_n is called a subsheaf of the sheaf H_n of abelian groups, if

i) $\Psi(H'_n) = X$

ii) For each point $x \in X$, the stalk $(H'_n)_x$ is a subgroup of $(H_n)_x$.

We now give the following theorem.

Theorem 4.1. (Existence Theorem). Let X = (X, c) be a connected, locally path connected topological space and $(H_n)_c$ be higher homotopy group with respect to $c \in X$. Then each subset $(H'_n)_c$ of $(H_n)_c$ determines a sheaf over X.

As a result of Theorem 4.1.,

1. If $(H'_n)_c = (H_n)_c$, it is obtained that $H'_n = H_n$. So, the sheaves H'_n are subsheaves of H_n . Also, $\Psi' = \Psi|H'_n$.

2. If (H'_{n_1c}) , (H_{n_2c}) are any two subset of (H'_{n_1c}) and $(H'_{n_1c}) \subset (H'_{n_1c})$ then

 $H'_{n_1} \subset H'_{n_2}$.

Furthermore, if $W \subset X$ is an open set, then

 $\Gamma(W, H'_{n_1}) \subset \Gamma(W, H'_{n_2}) \subset \Gamma(W, H_n).$

3. Let H'_n be a subsheaf of the sheaf H_n of abelian groups and $W \subset X$ be an open set. Then $\Gamma(W, H'_n)$ is a subgroup of $\Gamma(W, H_n)$. If we take W = X, then $\Gamma(X, H'_n)$ is a subgroup of $\Gamma(X, H_n)$.

Now, we give the following definition.

Definition 4.2. Let H_n be the sheaf of abelian groups over X and $H'_n \subset H_n$ be a subsheaf of abelian groups. Let us associate the set

 $M_w = \Gamma(W, H_n)/\Gamma(W, H'_n)$

with the open set W, for each $W \subset X$ open. Then, the system $\{X, M_w, \gamma_{w,v}\}$ is a pre-sheaf [4]. The sheaf defined by the pre-sheaf $\{X, M_w, \gamma_{w,v}\}$ is called Quotient sheaf and it is denoted by $Q_{H'}$.

Theorem 4.2. Let H_n be the sheaf of abelian groups over X and $H'_n \subset H_n$ be a subsheaf of abelian groups. Then, the Quotient sheaf $Q_{H'_n}$ is a sheaf of abelian groups over X.

Proof. Let H_n be the sheaf of abelian groups over X and $H'_n \subset H_n$ be a subsheaf of abelian groups. Also, H'_n is a normal subsheaf of the sheaf H_n . So, $\Gamma(X, H'_n) \subset \Gamma(X, H_n)$ is a normal subgroup and $\Gamma(X, H_n)/(X, H'_n)$ is a group. Let

$$Q_{H'_{n}} = \bigvee_{x \in X} (Q_{H'_{n}})_{x}$$

and

$$(Q_{H'_n})_x = \{(W, [s])_x : W \subset X \text{ is an open set, } [s] \in \Gamma(X, H_n)/\Gamma(X, H'_n)\}.$$

So, the operation defined in each stalk $(Q_{H'_{p}})_{x}$ in the form of $(W, [s_1])_{x}$. $(W, [s_2])_{x} = (W, [s_1, s_2])_{x}$ is well defined. It is easily seen that each stalk $(Q_{H'_{n}})_{x}$ is an abelian group with this operation for every $x \in X$. Since $(Q_{H'_{n}})_{x} \cong \Gamma(X, Q_{H'_{n}}), \Gamma(X, Q_{H'_{n}})$ is an abelian group. Thus, $Q_{H'_{n}}$ is a sheaf of abelian groups.

Moreover, $Q_{H'_n}$ is a covering space as a sheaf of abelian groups. Also, it is a regular covering space.

Theorem 4.3. Let H_n be the sheaf of abelian groups over X, $H'_n \subset H_n$ be a subsheaf of abelian groups and $Q_{H'_n}$ be quotient sheaf. Then the group $\Gamma(X, Q_{H'})$ is isomorphic to the quotient group $\Gamma(X, H_n)/\Gamma(X, H'_n)$.

Proof. To prove this theorem let us define the mapping

$$\gamma : \Gamma(X, H_n)/\Gamma(X, H'_n) \rightarrow \Gamma(X, Q_{H'_n})$$

in the form of $\gamma([s]) = \gamma[s]$, where γ representes inductive limit [4]. If $\gamma([s]) = 1$, then $\gamma[s] = 1$ and so, $\gamma[s](x) = (X, [e])_x$, for any $x \in X$. That is

$$(W, [s])_{*} = (W, [e])_{*}$$
.

Thus,

[s] = [e].

Hence, γ is one to one. Clearly γ is onto. Now, if $[s_1]$, $[s_2] \in \Gamma(X, H_n) / \Gamma(X, H'_n)$ are any two elements, then

$$\begin{aligned} \gamma([s_1][s_2]) &= \gamma([s_1.s_2]) \\ &= \gamma[s_1.s_2] \\ &= \gamma[s_1].\gamma[s_2] \end{aligned}$$

Thus, γ is a homomorphism.

Therefore, $\gamma : \Gamma(X, H_n)/\Gamma(X, H'_n) \to \Gamma(X, Q_{H'_n})$ is an isomorphism.

REFERENCES

- [1] BALCI, S., On the Restricted Sheaf, Comm. Fac. Sci. Univ. Ankara Ser. A1, Vol 37 (1988) pp. 41-51.
- [2] BALCI, S., On the Existence and Lifting Theorems for Sheaves, Pure and Applied Mathematika Sciences, Vol. 37, No. 1-2 (1993) pp., 57-65.
- [3] BALCI, S., The Seifert-Van Kampen Theorem for the Group of Global Sections, Indian J. Pure and Appl. Math., 27(9) (1996) pp., 883-891.
- [4] GRAURET, H. and FRITZSCHE, K., Several Complex Variables, Springer-Verlag, New York (1976).
- [5] GUNNING, R.C. and ROSSI, H., Analytic Function of Several Variables, Prentice-Hall, Inc., Englewood Cliffs, N.T. (1965).
- [6] HILTON, P.J., An Introduction to Homotopy Theory, Cambridge University Press., Cambridge (1961).
- [7] MUNKERS, J.R., Topology, Prentice Hall, Inc., Englewood Cliffs, New Jersey (1975).
- [8] ULUÇAY, C., Restricted Sheaf Theory, Journal of Fac. Sci. of the K.T.Ü., Vol III, Fasc.7 (1980) pp., 59-68.
- [9] YILDIZ, C., The Sheaf of the Homology Groups of the Complex Manifolds, Comm. Fac. Sci. Univ. Ankara, Ser A1 Mathematiques, Tom: 46 (1997).
- [10] YILDIZ, C., The Sheaf of the H-Groups, Journal of the Institute of Sci. and Technology of Gazi Univ., Vol.10 No:2, (1997).