PAPER DETAILS

TITLE: Cellular folding

AUTHORS: Em ELKHOLY

PAGES: 0-0

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/1643088

Commun. Fac. Sci. Univ. Ank. Series A1 V. 47. pp. 167-173 (1998)

CELLULAR FOLDING

E.M. ELKHOLY*, R.M. SHAHIN**

- * Department of Mathematics, Faculty of Sciences, Tanta University, Tanta, EGYPT.
- ** Department of Mathematics, Faculty of Education, Tanta University, Kafr El-Sheikh, EGYPT.

(Received March 20, 1998; Accepted Dec. 18, 1998)

ABSTRACT

In this paper we introduce the notion of cellular and neat cellular foldings on a category of complexes equiped with cellular subdivision such that each closed n-cell is homeomorphic to a closed Euclidean n-cell. Then we obtained the necessary and sufficient conditions for a cellular map to be a cellular folding and a neat cellular folding respectively.

1. INTRODUCTION

Let K and L be directed complexes and f: $|K| \rightarrow |L|$ be continuous function. Then f: $K \rightarrow L$ is a cellular function if

- (1) for each directed cell $\sigma \in K$, $f(\sigma) = \pm \tau$ where τ is a directed cell in L,
- (2) $\dim(f(\sigma)) \leq \dim(\sigma)$, [4].

Let K and L be complexes of the same dimension n and K be equipped with finite cellular subdivision such that each closed n-cell is homeomorphic to a closed Euclidean n-cell.

A cellular map Φ : $K \to L$ is a cellular folding iff Φ satisfies the following:

- (i) For each i-cell $e^i \in K$, $\Phi(e^i)$ is an i-cell in L. ie. Φ maps i-cells to i-cells.
- (ii) If \bar{e} contains n vertices, then $\overline{\Phi(e)}$ must contains n distinct vertices.

In the case of directed complexes it is also required that Φ maps directed i-cells of K to i-cells of L but of the same orientation.

A cellular folding Φ : $K \to L$ is a neat cellular folding if $L^n - L^{n-1}$ consists of a single n-cell. Int L.

The set of complexes together with the neat cellular foldings form a category which is a subcategory of the category of cellular foldings and we denote it by N(K,L). Thus if $N(K,L) \neq \Phi$, then dim $L \geq \dim K$.

Throughout this paper, we use the term complex to mean a complex equipped with celular subdivision such that each closed n-cell is homeomorphic to a closed Euclidean n-cell.

2. CHAIN MAPS AND CELLULAR FOLDING

The next theorem gives the necessary and sufficient condition for a cellular map to be a cellular folding.

THEOREM 1. Let K and L be complexes of the same dimension n and Φ : K \to L be a cellular map such that $\Phi(K) = L \neq K$. Then Φ is a cellular folding iff the map Φ_p : $C_p(K) \to C_p(L)$ between chain complexes $(C_p(K), \partial_p)$, $(C_p(L), \partial_p')$ is a chain map.

PROOF. Let Φ be a cellular folding, then it is a cellular map and we can define a homomorphism $\Phi: C_n(K) \to C_n(L)$ by

we can define a homomorphism
$$\Phi_p \colon C_p(K) \to C_p(L)$$
 by
$$\Phi_p(\sigma) = \begin{cases} \Phi(\sigma) \text{ if } \Phi(\sigma) \text{ is a p-cell in } L, \\ \Phi & \text{if } \dim(\Phi(\sigma))$$

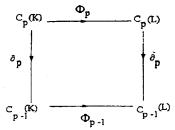
and since a cellular folding maps p-cells to p-cells, $\Phi_p(\sigma_{\lambda})$ is a p-cell in L for all $\lambda.$

Thus for a p-chain $C=a_1\sigma_1^p+a_2\sigma_2^p+...+a_m\sigma_m^p\in C_p(K)$ where $a_1's\in Z$ and $\sigma_1's$ are p-cells in K,

$$\begin{split} & \Phi_p(C) \,=\, \Phi_p(a_1\sigma_1^P + a_2\sigma_2^P + ... + a_m\sigma_m^P) \\ & \Phi_p(C) \,=\, \Phi_p(a_1\sigma_1^P) + \Phi_p(a_2\sigma_2^P) + ... + \Phi_p(a_m\sigma_m^P) \\ & = \, a_1\Phi_p(\sigma_1^P) \,+\, a_2\Phi_p(\sigma_2^P) \,+\, ... \,+\, a_m\Phi_p(\sigma_m^P) \,\in\, C_p(L). \end{split}$$

Now since the closure of both σ^p_{λ} and $\Phi(\sigma^p_{\lambda})$ has the same number of distinct vertices, then Φ_{p-1} o $\partial_p = \partial_p'$ o Φ_p , where $\partial_p \colon C_p(K) \to C_{p-1}(K)$

and $\partial_p'\!\!: C_p(L)\to C_{p-l}(L)$ are the boundary operators, that is to say the following diagram commutes



and hence Φ is a chain map.

Conversly, suppose Φ is not a cellular folding, then there exists a j-cell σ in K such that $\Phi(s)$ is a m-cell in L, where $m \neq j$. Since Φ_p is a homomorphism from the p-th chain of K to the p-th chain of L, then

$$\Phi_{j} (\sum_{i=1}^{n-1} \lambda_{i} \sigma_{i}^{(j)} + \lambda_{n} \sigma) = \sum_{i=1}^{n-1} \lambda_{i} \Phi(\sigma_{i}^{(j)}) + \lambda_{n} \Phi(\sigma)$$

but $\Phi(\sigma)$ is not a j-cell, then Φ_j cannot be a j-chain map and hence our assumption is false and we have the result.

2.1. Examples

1- Let K be a complex such that |K| is the infinite stip $\{(x,y): -\infty < x < \infty, 0 \le y \le 2\}$ equipped with an infinite number of 2-cells such that the closure of each 2-cell consists of four 0-cells and four 1-cells, see Fig. 1.

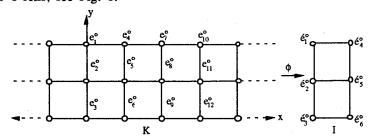


Fig. 1

Let L be a complex with six 0-cells, seven 1-cells and two 2-cells. The cellular map Φ : K \rightarrow L defined by

$$\Phi(e_n^0) = e_m'^0 \begin{cases} \text{where } m = 1,2,...,6, \text{ and } \\ n - m \text{ is a multiple of } 6 \end{cases}$$

$$\Phi(e_1^2) = \begin{cases} e_1'^2 \text{ if } i \text{ is odd} \\ e_2'^2 \text{ if } i \text{ is even} \end{cases}$$

This map is a cellular folding.

2- Consider a complex K such that $|K| = S^2$ with cellular subdivision consisting of two 0-cells, four 1-cells and four 2-cells. Let Φ : $K \to K$ be a cellular map defined by

$$\Phi(e_{1}^{0}, e_{2}^{0}) = (e_{1}^{0}, e_{2}^{0})$$

$$\Phi(e_{2}^{1}, e_{4}^{1}) = (e_{1}^{1}, e_{2}^{1})$$

$$\Phi(e_{n}^{2}, e_{1}^{2}) = e_{1}^{2} \text{ for } n = 1,2,3,4.$$

$$e_{2}^{2} e_{1}^{1} e_{2}^{2}$$

$$e_{3}^{2} e_{4}^{1} e_{4}^{2}$$

$$E_{4}^{2} e_{4}^{1}$$

$$E_{5}^{2} e_{4}^{1}$$

$$E_{6}^{2} e_{1}^{1}$$

$$E_{7}^{2} e_{1}^{1}$$

$$E_{8}^{2} e_{1}^{1}$$

$$E_{1}^{2} e_{2}^{1}$$

$$E_{2}^{1} e_{3}^{1}$$

$$E_{3}^{1} e_{4}^{1}$$

$$E_{4}^{1} e_{2}^{1}$$

$$E_{5}^{1} e_{4}^{1}$$

$$E_{7}^{1} e_{2}^{1}$$

$$E_{7}^{1} e_{3}^{1}$$

$$E_{7}^{1} e_{4}^{1}$$

$$E_{7}^{1} e_{3}^{1}$$

$$E_{7}^{1} e_{4}^{1}$$

$$E_{7}^{$$

This map is a cellular folding with image consisting of two 0-cells, two 1-cells and a single 2-cell, see Fig. 2.

3- Consider a complex K such that |K| is a tours with cellular subdivision consisting of three 0-cells, six 1-cells and three 2-cells.

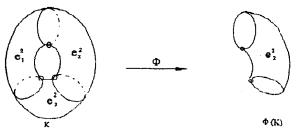


Fig. 3

Any cellular map $\Phi \colon K \to K$ which has two vertices in the image is not a cellular folding since Φ_1 is not a chain map in this case.

4- Consider a complex K such that |K| is a tours with cellular subdivision consisting of four 0-cells, eight 1-cells and four 2-cells.

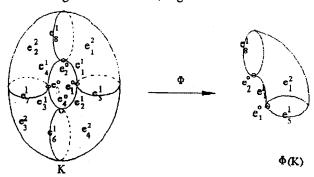


Fig. 4

A cellular map Φ : $K \to K$ defined by

$$\Phi(e_1^o e_2^o e_3^o e_4^o) = (e_1^o e_2^o e_3^o e_4^o)
\Phi(e_1^1 e_2^1, ..., e_8^1) = (e_1^1 e_1^1 e_1^1 e_1^1 e_3^1 e_8^1 e_5^1 e_8^1 e_8^1 e_9^1)
\Phi(e_1^o) = e_1^1 \text{ for } n = 1,2,3,4.$$

This map is a cellular folding with image consisting of two 0-cells, three 1-cells and a single 2-cell.

5- Consider a cell-complex K such that $|K| = S^2$ with cellular subdivision consisting of four 0-cells, six 1-cells and four 2-cells, see Fig. 5.

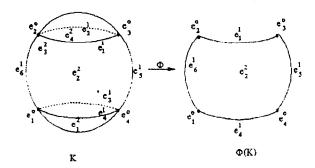


Fig. 5

Let Φ : $K \to K$ be a cellular map defined by

$$\Phi(e_{1}^{\circ}e_{2}^{\circ}e_{3}^{\circ}e_{4}^{\circ}) = (e_{1}^{\circ}e_{2}^{\circ}e_{3}^{\circ}e_{4}^{\circ})$$

$$\Phi(e_{1}^{1}e_{2}^{1}e_{3}^{1}e_{4}^{1}e_{5}^{1}e_{6}^{1}) = (e_{1}^{1}e_{1}^{1}e_{4}^{1}e_{4}^{1}e_{5}^{1}e_{6}^{1})$$

$$\Phi(e_{n}^{2}) = e_{2}^{2} , \quad n = 1,2,3,4.$$

This map is not cellular folding since $\overline{e_1^2}$, $\overline{\Phi(e_1^2)}$ does not contain the same number of vertices.

3. NEAT CELLULAR FOLDING

The following theorem gives necessary and sufficient condition for a cellular map to be a neat cellular folding.

THEOREM (2). If $\Phi \in N(K,L)$ such that $\Phi(K) = L \neq K$, then Φ is a neat cellular folding iff the map $\Phi_p \colon C_p \to C_p(L)$ between the chain complexes $(C_p(K),\partial_p)$, $(C_p(L),\partial_p')$ is a chain map and $H_p(K) \simeq \ker \Phi_p^*$, where $\Phi_p^* \colon H_p(K) \to H_p(L)$, $p \geq 1$ is the induced homomorphism.

PROOF. Assuming that Φ is a neat cellular folding, then it is a cellular folding and hence the map $\Phi: H_p(K) \to H_p(L)$ between the chain complexes $(C_p(K), \partial_p)$, $(C_p(L), \partial'_p)$ is a chain map. Now consider the induced homomorphism $\Phi_p^*: H_p(K) \to H_p(L)$, there is a short exact sequence:

$$0 \, \to \, \text{ker} \, \, \Phi_p^* \stackrel{i^*}{\to} \, H_p(K) \stackrel{\Phi_p^*}{\to} \, \text{Im} \, \, \Phi_p^*$$

where i tild is the induced homomorphism by the inclusion. Since Φ is surjective, we have Im $\Phi_p^* \simeq H_p(L)$, but $H_p(L) = 0$ for neat cellular folding, hence the above sequence will take the form:

$$0 \, \to \, \text{ker} \, \, \Phi_{\text{p}}^{*} \stackrel{i^{*}}{\to} \, H_{\text{p}}(K) \, \to 0 \, \, .$$

The exactness of this sequence implies that

$$H_p(K) \simeq \ker \Phi_p^*$$

Conversely, suppose Φ_p is a chain map between chain complexes and $H_p(K) \simeq \ker \Phi_p^*$ but Φ is not neat, then $L^n - L^{n-1}$ consists of more than one n-cells. Thus

$$H_o(L) \simeq Z^j$$
 , $H_p(L) = 0$, for $p = 1,2,...,n$

and

$$H_p(K) \ \simeq \ H_p(L) \ \oplus \ \ker \Phi_p^* \not \simeq \ \ker \Phi_p^* \quad \text{ for } p \, = \, 0$$

hence the assumption is false and Φ is neat.

It should be noted that examples (2) and (4) are neat cellular foldings.

REFERENCES

- [1] ELKHOLY, E.M., AL-KHURSANI, H.A., Foldings of CW-complexes. Jour. Inst. Math. & Comp. Sci. (Math. Ser.) Vol. 4, No. 1 (1991) pp. 41-48.
- [2] ELKHOLY, E.M., AL-SHIABANI, A.M., Homology groups and simplicial folding, Jour. Fac. Edu., No. 18 (1993) pp. 443-449.
- [3] ELKHOLY, E.M., Folding of simplicial complexes. Jour. Fac. Edu. No. 19 (1994) pp. 835-842.
- [4] KINSEY, L.C., Topology of Surfaces, Springer Verlag New York, Inc. (1993).