PAPER DETAILS

TITLE: On H-continuit y of multifunctions defined from a product space to a product space

AUTHORS: M AKDAG

PAGES: 1-6

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/1645183

ON H-CONTINUITY OF MULTIFUNCTIONS DEFINED FROM A PRODUCT SPACE TO A PRODUCT SPACE

M. AKDAĞ

Cumhuriyet University, Faculty of Arts and Science, Department of Mathematics, 58140 Sivas-TURKEY E-mail: makdag@cumhuriyet.edu.tr

(Received: Nov. 8, 2002; Revised: Feb. 17, 2003; Accepted: Feb. 18, 2003)

ABSTRACT

The purpose of the present paper is to investigate some properties of H-continuous (Almost Hcontinuous) multifunctions defined from a product space to a product space. The relations between the strongly closed graph of a multivalued functions and H-upper semicontinuity of multivalued functions are also investigated.

1. INTRODUCTION

The H-continuity of single valued function has been studied by P. E. Long and T. R. Hamlett [1,1975]. The study for multivalued functions of H-continuity has been taken over by V. Popa [2] and R. E. Smithson [3]. Moreover, the H-almost upper semi continuity of single valued functions has been extended to multivalued functions by Y. Küçük and M. Akdağ [4].

In this paper, I studied H-almost upper semicontinuity and H-upper semi continuity and C-upper semi continuity of multivalued functions defined from a product space to a product space. Also, I obtained some relations between strongly closed graph and H-upper semicontinuity of multivalued functions.

2. PRELIMINARIES

A multivalued function F:X Y is a function F:X $P(Y)\setminus\{\emptyset\}$ where P(Y) is the power set of Y. For a multivalued function F, the upper and the lower inverse of a set B of Y will be denoted by $F^{+}(B)$ and $F^{-}(B)$, respectively where $F^{+}(B)=\{x\in X | F(x)\subset B\}$ and $F^{-}(B)=\{x\in X | F(x) \in B \ \emptyset\}$ [5].

The graph G(F) of a multivalued function F:X Y is the subset $\{(x,y)|x \in X, y \in F(x)\}$ of X×Y. A multivalued function F:X Y has a closed graph (strongly

M. AKDAĞ

closed graph) if and only if for each $(x,y) \in X \times Y \setminus G(F)$, there exist open sets U and V containing x and y, respectively such that $(U \times V) \quad G(F) = \emptyset ((U \times \overline{V}) \quad G(F) = \emptyset) [6].$

A subset A of a space X is a quasi H-closed set (or H-set) if for every open cover $\vartheta = \{U_{\alpha} \mid \alpha \in \Delta\}$ of A there exist a finite subcover $\{U_1, U_2, ..., U_n\}$ of ϑ such that $A \subset \prod_{i=1}^{n} |\alpha| \leq 1$.

 $\bigcup_{i=1}^{n} cl(U_{i})$ [7]. If X is an H-set, then X is H-closed [7]. A space X is H-closed if it is

Hausdorff and H-set [7]. A Hausdorff space X is locally H-closed if for each $x \in X$, there exists a H-closed neighbourhood of X [8]. A space X is C-compact if every closed subset of X is an H-set [9]. A space X is HC-space if every H-set of X is a closed set [5].

Let X and Y be two topological spaces and F be a multivalued function from X to Y. Then F is said to be H-upper semicontinuous (H-almost upper semicontinuous) at $x \in X$ if for any H-set V with $F(x) = \emptyset$, there exists a neighbourhood U of x

such that for $x \in U$, $F(x) \quad U=\emptyset$, $(F(x) \quad U=\emptyset)$. If for every point x in X, F is H-upper semicontinuous (H-almost upper semicontinuous), then F is H-upper semicontinuous (H-almost upper semicontinuous) at X [5].

A multifunction F is said to be C-upper semicontinuous at $x \in X$ if for any compact set V with F(x) V= Ø, there exists a neighbourhood U of x such that for $x_o \in U$, $F(x_o)$ V=Ø [10]

A multifunction F is said to be point closed (point compact) if for each $x \in X$, F(x) is closed (compact).

3. PRODUCT SPACES

Let $(X_{\alpha}, \tau_{\alpha})$ and $(Y_{\alpha}, \hbar_{\alpha})$ be topological spaces, $(\Pi X_{\alpha}, \tau)$ be product space and also let us denote that $F(x)=\{F_{\alpha}(x_{\alpha})\}$ such that $x=\{x_{\alpha}\}_{\alpha \in \Delta}$, $F_{\alpha}:X_{\alpha}$ Y_{α} and $F:\Pi X_{\alpha}$ ΠY_{α} .

Lemma 3.1. Let $f:(X,\tau) \rightarrow (Y, \hbar)$ a continuous function. If A is a H-set of X, then f(A) is H-set of Y.

Proof: Let A be a H-set in X and let $\cong \{U_{\alpha} \mid \alpha \in \Delta\}$ be an open cover of f(A). Then $f(A) \subset \bigcup_{\alpha \in \Delta} U_{\alpha}$ and $A \subset f^{1}(f(A)) \subset f^{1}(\bigcup_{\alpha \in \Delta} U_{\alpha}) = \bigcup_{\alpha \in \Delta} f^{1}(U_{\alpha})$. Since f is continuous, f

¹(U_{α}) is an open set in X for each $\alpha \in \Delta$. Thus $\circ = \{f^1(U_{\alpha}) | \alpha \in \Delta\}$ is an open cover of A. Since A is an H-set, there exists a finite cover $\{U_1, U_2, ..., U_n\}$ of A such that

 $A \subset \bigcup_{i=1}^{n} \overline{f^{-1}(U_i)}$. Therefore, since f is continuous,

$$f(A) \subset f(\bigcup_{i=1}^{n} \overline{f^{-1}(U_i)}) \subset \bigcup_{i=1}^{n} f(\overline{f^{-1}(U_i)}) \subset \bigcup_{i=1}^{n} \overline{f(f^{-1}(U_i))} \subset \bigcup_{i=1}^{n} \overline{U}_i$$

Thus f(A) is an H-set in Y.

Lemma 3.2. If f:X Y is continuous, onto, open and X is locally H-closed Hausdorff space, then Y is locally H-closed.

Proof: Let $y \in Y$. Then there is a $x \in \{f^1(y)\} \subset X$. Since X is locally H-closed, there exists a quasi H-closed neighbourhood K of x. Hence there is an open set U in X such that $x \in U \subset K$. Since f is continuous and open, f(K) is a quasi H-closed neighbourhood of y from Lemma 3. 1. Thus Y is locally H-closed.

Lemma 3.3. If $\prod X_{\alpha}$ is locally H-closed, then X_{α} is locally H-closed for each α∈Δ.

Proof: Since the a-th projection function P_{α} : $\prod X_{\alpha} = X_{\alpha}$ is continuous, open and from Lemma 3. 2., the proof is clear.

Lemma 3. 4. For each $\alpha \in \Delta$, multifunctions $F_{\alpha}: X_{\alpha} Y_{\alpha}$ is point closed if and only if multifunction F: ΠX_{α} ΠY_{α} is point closed where $F(x) = \{F_{\alpha}(x_{\alpha})\}$ for $x = \{x_{\alpha}\}$.

Proof: Let $x \in \Pi$ X_{α} with $x = \{x_{\alpha}\}, \alpha \in \Delta$. Then $F(x) = \{F_{\alpha}(x_{\alpha})\} = \overline{\{F_{\alpha}(x_{\alpha})\}}$ $= \prod \overline{\{F_{\alpha}(x_{\alpha})\}} = \prod F_{\alpha}(x_{\alpha}) = \overline{\prod F_{\alpha}(x_{\alpha})} = \overline{F(x)}$

Lemma 3.5. If Y_{α} is H-closed, then $\prod Y_{\alpha}$ is H-closed for each $\alpha \in \Delta$ [7].

Lemma 3. 6. Let $\{X_{\alpha} \mid \alpha \in \Delta\}$ and $\{Y_{\alpha} \mid \alpha \in \Delta\}$ be two families of topological spaces. F_{α} : X_{α} Y_{α} be a multifunction for each $\alpha \in \Delta$. If F_{α} is strongly closed for each $\alpha \in \Delta$, then G(F) which is the graph of F is strongly closed.

Proof: Let $(x,y) \in G(F)$. Then there is a $\beta \in \Delta$ such that $y_{\beta} \notin F_{\beta}(x_{\beta})$. Since $G(F_{\beta})$ is strongly closed, there exist two open sets U_β and $V_\beta,$ respectively in X_β and in Y_β such that $x_{\beta} \in U_{\beta}$ and $y_{\beta} \in V_{\beta}$ and $F_{\beta}(U_{\beta})$ $\overline{V_{\beta}} = \emptyset$. If we take $U = U_{\beta} \times \prod_{\alpha \neq \beta} X_{\alpha}$ and $V = V_{\beta}$

 $\times \prod_{\alpha \neq \beta} Y_{\alpha}$, then U and V are open sets in ΠX_{α} and ΠY_{α} , respectively and $x \in U$, $y \in V$

and $F(U) = \emptyset$. Indeed: $F(U) \quad V = (F_{\beta}(U_{\beta})) \times \prod_{\alpha \neq \beta} Y_{\alpha}) \quad (\overline{V_{\beta}} \times \prod_{\alpha \neq \beta} Y_{\alpha}) = (F_{\beta}(U_{\beta}) \quad \overline{V_{\beta}}) \times \prod_{\alpha \neq \beta} Y_{\alpha} = \emptyset. \text{ Thus } G(F)$

is strongly closed.

M. AKDAĞ

Lemma 3.7. If for each $\alpha \in \Delta$, X_{α} is HC-closed, then $\prod X_{\alpha}$ is HC-space.

Proof: Let $G = \prod G_{\alpha} \subset \prod X_{\alpha}$ be a quasi H-closed set. From Lemma 3.1. and since α -th projection P_{α} is continuous for each $\alpha \in \Delta$, $P_{\alpha}(G) = G_{\alpha} \subset X_{\alpha}$ is a quasi Hclosed set. Since X_{α} is HC-space, G_{α} is closed in X_{α} that is $G_{\alpha} = G_{\alpha}$. Thus $G = \prod_{\alpha \in \Delta} G_{\alpha} = \prod_{\alpha \in \Delta} \overline{G_{\alpha}} = \overline{G}$ and $\prod X_{\alpha}$ is HC-space.

Theorem 3. 8. Let $\{X_{\alpha} \mid \alpha \in \Delta\}$ and $\{Y_{\alpha} \mid \alpha \in \Delta\}$ be two families of topological spaces. If for each $\alpha \in \Delta$, $F_{\alpha}: X_{\alpha} \quad Y_{\alpha}$ is H-u.s.c.(C-u.s.c.), point compact (point closed) and Y_{α} is locally H-closed Hausdorff space (locally compact Hausdorff) then multifunction F: $\prod X_{\alpha} \quad \prod Y_{\alpha}$ is H-u.s.c.(C-u.s.c.).

Proof: Since for each $\alpha \in \Delta$, F_{α} is H-u.s.c.(C-u.s.c.) from the Propositions 4.11 and 4.12 in [11] and the Proposition 14 in [10], $G(F_{\alpha})$ is strongly closed .From Lemma 3. 4., G(F) is strongly closed. Thus F is H-u.s.c.(C-u.s.c.)

Theorem 3. 9. If multifunction F: $\prod X_{\alpha} = \prod Y_{\alpha}$ is H-almost u.s.c., then for each $\alpha \in \Delta$, multifunctions F_{α} : $X_{\alpha} = Y_{\alpha}$ is H-almost u.s.c..

Proof: Let $x_{\beta} \in X_{\beta}$ for any $\beta \in \Delta$ and let V_{β} be a set such that $F_{\beta}(x_{\beta}) \subset V_{\beta} \subset Y_{\beta}$ and its complement is quasi H-closed. Also we define a set A_{β} with $A_{\beta} = \{x \in \prod X_{\alpha} \mid \text{the } \beta$ -th coordinate of x is $x_{\beta}\}$ for $x \in A_{\beta}$ and since $A_{\beta} \subset \prod X_{\alpha}$, $x \in \prod X_{\alpha}$. On the other hand, using the β -th projection P_{β} : $\prod Y_{\alpha} = Y_{\beta}$ we obtain $P^{-1}{}_{\beta}(V_{\beta}) = V_{\beta} \times \prod_{\alpha \neq \beta} Y_{\alpha}$.

Since F is H-almost u.s.c., there exists an open set $U \subset \prod X_{\alpha}$ such that $F(U) \subset \overline{V_{\beta} \times \prod_{\alpha \neq \beta} Y_{\alpha}} \subset \overline{V_{\beta}} \times \prod_{\alpha \neq \beta} Y_{\alpha}$. Since P_{β} is open, $P_{\beta}(U_{\beta})=U_{\beta} \subset X_{\beta}$ is an open

set in X_{β} . Thus $F_{\beta}(U_{\beta}) \subset \stackrel{\circ}{V_{\beta}}$ and F_{β} is H-almost u.s.c. at $x_{\beta} \in X_{\beta}$. Since x_{β} is an arbitrary point, F_{β} is H-almost u.s.c. on X_{β} .

Theorem 3. 10. Let for each $\alpha \in \Delta$, Y_{α} be H-closed, locally H-closed and HC-space. If multifunction F: $\prod X_{\alpha} \quad \prod Y_{\alpha}$ is H-u.s.c., then multifunctions $F_{\alpha}:X_{\alpha} \quad Y_{\alpha}$ is H-u.s.c. for each $\alpha \in \Delta$.

Proof: Since Y_{α} is H-closed, locally H-closed and HC-space from Lemma 3. 4., Lemma 3. 5. and Lemma 3. 7., $\prod_{\alpha \in \Delta} Y_{\alpha}$ is H-closed, locally H-closed and HC-space

for each $\alpha \in \Delta$. Since F is H-u.s.c., F is H-almost u.s.c. [4]. Thus for each $\alpha \in \Delta$, F_{α} is H-almost u.s.c. from Lemma 3. 7. and from the Proposition 3.13 in [4], F_{α} is H-u.s.c.

Corollary 3. 11. Let for each $\alpha \in \Delta$, Y_{α} be H-closed, locally H-closed and HC-space and let F_{α} be compact point. Then multifunction F: $\prod X_{\alpha}$ $\prod Y_{\alpha}$ is H-u.s.c. if and only if for each $\alpha \in \Delta$, multifunctions $F_{\alpha}: X_{\alpha} \quad Y_{\alpha}$ is H-u.s.c.

Proof: (\Rightarrow): From Theorem 3. 10., it is clear. (\Leftarrow): From Theorem 3. 8., it is clear.

Theorem 3. 12. If for each $\alpha \in \Delta$ multifunctions $F_{\alpha}: X = Y_{\alpha}$ has strongly closed graph then multifunction F:X Y_{α} has strongly closed graph.

Proof: Let $(x,y) \in G(F)$. Then $y \in F(x)$ and for at least a $\beta \in \Delta$, $y_{\beta} \notin F_{\beta}(x)$. Hence $(x,y_{\beta}) \notin G(F)$. Since $G(F_{\beta})$ is strongly closed, there exist two open sets U and V in X and in Y, respectively such that $x \in U$, $y \in V$ and $F_{\beta}(U) = V_{\beta} = \emptyset$. If we choose $V=V_{\beta} \times \prod Y_{\alpha}$, then V is open in $\prod Y_{\alpha}$ and $y \in V$ and F(U) $\overline{V} = \emptyset$. Indeed: $F(U) \quad \overline{V} = F(U) \quad (V_{\beta} \times \prod_{\alpha \neq \beta} Y_{\alpha}) = [(F_{\beta}(U) \quad \overline{V_{\beta}})] \times \emptyset \times [\prod_{\alpha \neq \beta} Y_{\alpha} \quad F_{\alpha}(U)] = \emptyset. \text{ Thus } G(F)$

is strongly closed.

Corollary 3.13. If Y_{α} is locally H-closed Hausdorff (locally compact Hausdorff) and for each $\alpha \in \Delta$, multifunctions $F_{\alpha}: X \to Y_{\alpha}$ is compact point (closed point) and Hu.s.c.(C-u.s.c.), then multifunction F:X $\prod Y_{\alpha}$, H-u.s.c. (C-u.s.c.).

Proof. From Theorem 3. 12. and the Proposition 3.13 in [4], it is clear.

REFERENCES

- [1] LONG P. E. and HAMLETT T. R, "H-Continuous Functions", Boll. Un. Math. İtal 11(1975), 552-558.
- [2] POPA V., "H-Almost Continuous Multifunctions", Stud. Cerc. Math. 32(1980) no:1,103-109.
- [3] SMITHSON R. E., "Some General Properties of Multivalued Functions ", Pac. J. Math, 15(1965), 681-703.
- [4] KÜÇÜK Y. and AKDAĞ M, "On H-Almost Continuity Of Multivalued Functions", Cum.Uni. Sci. Faculty J. 15(1993).
- [5] PONOMAREV. V. I., "Properties Of Topological Spaces Preserved Under Multivalued Continuous Mapping Of Compacta", Amer. Math. Soc. Translations (2), 38(1964), 119-140.

M. AKDAĞ

- [6] HERRINGTON L. L. and LONG P. E., "Characterizations Of H-Closed Spaces", Proc. Amer. Math. Soc. 48(1975), 469-475.
- [7] NOIRI T., "Properties Of H-Continuous Functions", Res.Rep.Of Yatsushiro Nat. Coll .of Tech., 1(1979), 85-90.
- [8] POPA V., "Characterizations of H-Almost Continuous Functions", Glasnik Matematikci 22, 42(1978), 457-461.
- [9] VIGLINO G., "C-compact Spaces ", Duke.Math.J., 36 (1969), 761-764.
- KÜÇÜK Y. and ÖZER O. "Various topologies on 2⁴{Y} and continuous of multi-valued functions", Doğa-Tr. J. of Mathematics 14(1990), 158-167.
 KÜÇÜK Y. and AKDAĞ M, "Various Topologies on 2⁴{Y} and H-Continuous of Multi-valued Functions", IV.National Mathematics Symposym, (1991), Hatay -Turkey. [10]
- [11]

8