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ABSTRACT

The perfect systems play a very important role in giving combinatorial constructions of
representations of the Weyl groups. In this paper, we present an algorithm to construct the perfect systems

for the complex root systems of type B,' . We then use this algorithm to find a basis for the Specht

modules of the imprimitive complex reflection groups G(m,1,n) = W(B,’," ) . In particular, application of
the algorithm conforms with known results in the representation theory of the generalized symmetric
groups. Thus this completes the combinatorial construction of the irreducible representations of w(B")
in terms of root systems.
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1. INTRODUCTION

There are well-known constructions of irreducible representations and of irreducible
modules, called Specht modules, for the symmetric groups S, which are based on

elegant combinatorial concepts connected with Young tableaux, etc. (see, e.g. [10]).
Morris [11] described a possible extension of this work to Weyl groups in general.
In recent years, a further development of these ideas has appeared in Halicioglu and
Morris [8] and Halicioglu [9], where for Weyl groups, the symmetric groups were
taken as role models. The familiar concepts of Young tableaux, tabloids, etc., which
are so crucial in the development of the representation theory of the symmetric
groups, are seen to have equally familiar counterparts in the context of root systems.

2000 Mathematics Subject Classification: 20F55, 20C30.
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Later on, the present author [2] has extended this alternative approach to deal with
the imprimitive complex reflection groups G(m,1,n), where the Young tableaux
method given in [1] for generalized symmetric groups have been further generalised.
For the construction of a basis for the Specht modules of Weyl groups, Halicioglu
[9] has considered the root systems of simply laced type only (ie.,

A,,D,,E.,E,,E;) and also parabolic subsystems only. The present author [4]
extended the work of [9] to deal with the root systems of type of C,,.

In this paper, we construct the perfect systems for the complex root systems of type
B,', wherefore we present an algorithm which is a modification of Algorithm 3.1 of
{4] and results in a basis for the Specht modules of G(m,1,n).

2. SPECHT MODULES

We first establish the basic notation and state some results which are required later.
We refer the reader to {8}, [9] and [2] for much of the undefined terminology and
quoted results. As a convention, throughout this paper, we assume that £is a

primitive m -th root of unity.

2.1. Let ¥ =C", the complex vector space of dimension n with standard unitary
inner product (. , .) and the standard basis {el,ez,..., e, } Let S, be the group of all
nx npermutation matrices, and let A(m,l,n)be the group of all diagonal
nx nmatrices with £%,s; € Z in the (i, i) position. Then S, normalizes A(m,1,n) .
We let G(m,1,n) = A(m,1,n)x S, (semi-direct product). G(m,1,n)is an (imprimitive
complex) reflection group in V generated by unitary reflections, and
G(,L,n)=W(A4,_;) (Weyl group of type 4,_;) and G(2,1,n)=W(B,) (Weyl
group of type B, ). The group G(m,1,n) has the following presentation [7]:

2 3 2 L
G(m,l,n)=<r1,...,r,,_1,w1,...,w,,|ri =(rfia) =) =eli-jR22,

m _ _ _ _ S
W = eWW; = Wiw, LW = ,-+1r,-,r,~wj—wjr,~,j¢z,l+l>.

n
If o € G(m,1,n),then we may write o =7 ] w;',wherer € W(4,.1),1<s; Sm(see
i=]
[1]). Define ¢: G(m,l,n) > W(A4,_,) by ¢(o)=7. Then ¢ is an epimorphism and
ker ¢ = A(m,1,n).Define the sign of o e G(m,1,n) to be sgn(o) = (—1)1(¢(U)) where
I(¢(o)) is the length of ¢(0o).
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n n
We define f(o)=>s; foro=1]] wf "€ G(m),n), which is required later. Let
i=1 i=1
n
T=yT] wip" € G(m,,n), where y e W(4,_4), 1< p; <m, then we have
i=1
n
or=1y]] wl-(p' o),
i=1

o, 7 € G(m,1,n). Furthermore, we assume that f(r)=0 for all TeW(4,)

Thus, f(a'_l) =mk— f(o) forany o e G(m,},n), where ke Z.

Hence, f(or)= f(o)+ f(x) (mod m) for any

2.2.Let @ =(R, f) be a root system with W (®). Let S be a subset of R and gbea
map such that g=f|s. The pair ¥ =(S,g) is called a subsystem of @ if ¥ is a root
system. A reflection subgroup W(¥) of W(®) corresponding to the subsystem
¥ =(S,9) of ®is the subgroup generated by the Sa,g(a)With a € S. Let 7 =(B,6)

be a root graph. If a root system @ is the pre-root system obtained from a root graph
7 as described in 4.10 (i) of [6], then 7 is called a simple system in @. If ®is a
root system with simple system 7, then the graph associated to 7 is called a Cohen

(Dynkin) diagram of ®.
2.3. A root system for G(m,\,n)may be defined as follows (see [6]). Let
M = {f'l LeN, £ is a primitive m — th root of unity} Put
R(m,L,n) =ym{t(e,~ -—flej), er |7, ),k leN,i# j1<i, jk<n }
andlet f,,, ,:R(m,1,n)—> N\ {1 } be defined by

m if ae,um{ekllskSn}

fm,l,n (a) = {

then we have that ® =®(m,), n)=(R(m,],n), Smin) 1is a root system with

2 otherwise,

W(®@)=G(mLn). Let m=By ={a;=e~ey (=1..,n-1),a,=¢,}. Then
T=By Is a root graph and so, a simple system for
® = ®(m,1,n) with W(B]') = G(m,1,n).

The positive system in @ determined by z=B] is obtained to b_e

@ =PUPUQ, where
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P={e,-—-§lej115i<j3n,ISlSm}
Q={ekllsk5n}and
{§l|1sl$m—1}ifmisodd
P'=-AP with 1= ; m
{f Hsls—é—-—l}if m is even (see[3]).

If Wis a subsystem of @, then a simple system .J of ¥ can be chosen such that

J c ®* (see [3], Theorem 1).
Furthermore, the set Dy = {we W(®@) | wa)e d* forallaeJ } is a distinguished
set of coset representatives for W(¥) in W(®), that is, every element of W(®) can

be uniquely expressed in the form dywy where dy € Dy and wy e W(¥) (see
{3], Theorem 2).

24. Let o be a root system  with simple system

T= {a,- =g -¢(i=)..,n-D,a,= e,,} and corresponding reflection group

W =W(BI). Let ®* be the positive system determined by 7 as in 2.3. Let ¥ be

a subsystem of @ with simple system J < ®* and Cohen diagram A.
1if i=1
mifi=2,...,m

5
and Y (AP +1)+

m s,'
By [5], if ¥=3YB", with m,.={
j=1

[OR
i=1jm A

m $; .
> Z/lsf) =n, where Bz(l;i) are the indecomposable components of ¥, then let
i=2j=1 s

. m .
Jg(,), be a simple system in B/'I'(','J) (=L..,5:i=1..,m) and J = ZJ(’), where
7 /)

i=]

~ i .
J® ZJ/({(,), (i=1,..,m). Let ¥ be the largest subsystem in & orthogonal to ¥
oA

and let J1 c®* be the simple system of Pl Let ¥ bea subsystem of @
which is contained in @ \¥, with simple system J'c ®* and Cohen diagram A’.

m T if i=1
en v - § £ i I g
i=1j=1 i 1 if i=2,...m
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h m .
> ,uﬁ-l) + Z(,ug-‘) +1)=n, where B/'I"(’,.) are the indecomposable components of
j=l i=2j=1 g

¥’ and let J;'(';') be a simple system in BZ’(’,.) (=L.,n;i=1.,m) and
j j
m . . 7 . ‘
J'=370 where '@ = ZJ;ff,)) (i=1,..,m). Let " be the largest subsystem
i=1 J=1

in @ orthogonal to ¥’ and let J'* = d* be the simple system of ¥'*. Let J stand
for the regular ordered m-set

] 1 ll !1 ! !
{(J;;, o I TR T D)o S8 S0 ;m))}

where in addition the elements in each J% and J;ff,)) are ordered, and put
j j

TA = {wj lwe W}. The regular ordered m-set of  pairs
J= {(J(l) ; J'(l)),...,(J(m); J’(m))} is called a wuseful system in @ if
W(NHNwJ")= <e> and W(JHNwu't = (e). The elements of 7, are called
A -tableaux, the J®) and J'®) (1<k <m) are called the row and column of the k-

th constituent of J respectively. This is a natural extension of the concept of a
A™]_tableau in [1] (for a fuller explanation, see [2], Remark 2.5).

2.5. Two A-tableaux J and K are row equivalent, written J~ X, if there exists
weW(J) such that K =wJ. The equivalence class which contains the A -tableau
7 is {7} andis called a A -tabloid. Let 7, be the set of all A -tabloids, then by 2.3

we have 7, = {{cﬁ}lde DLP} Let C be the complex field and let M? be the
CW -module whose basis elements are the A -tabloids. Now, define K5 € CW by

K7 =3 cemw( Jv)g”‘f (”)(sgn o)o, where f(o) and sgn o are defined as in 2.1.
Then we call e; =K7{J} the A-polytabloid associated with J. The Specht
module $24" is the submodule of M2 generated by e where we W. A useful

system J in @ is called a good system if d¥ ¥’ = ¢ for d € Dy then one of the
following conditions is satisfied:
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1. {E} appears in ey,

2. There exists an i (1<i<n) which occurs as an index of some roots in
the k-th constituent of dJ such that i occurs as an index of some roots in the -th
constituent of J, where k # £.

If J is a good system in @, then SAA

is an irreducible module of W over the
complex field C (see [2], Corollary 3.14). '

Let J be a good system in @, and weW. A A-tableau wJ is standard if
we Dy N Dyr. A A-tabloid {;vj} is standard if there is a standard A -tableau in

the equivalence class {;vj} A A -polytabloid e~ is standard if wJ is standard.

A good system J is called a very good system in & if, for all d e Dy N Dy and
d'€ Dy, d'=dop where c e W(J'), peW(J) thend <d'. If J is a very good
system in @, then { e ldeDy N Dlyr} is linearly independent over C. The

question arises whether this set is a C-basis for S*% . In that case, we say that J is

a perfect system in @ if the set {eﬂ |d e Dy N un} is a basis for SM".

Thus, given a subsystem ¥ of @® with simple system J, if we can determine a
subsystem ¥’ in & \'¥ with simple system J' such that J is a perfect system, not
only is 584" an irreducible CW-module, but we also have a C-basis for oA

which consists of standard polytabloids. If J' uniquely exists, then we call J' the
dual of J.

3. PERFECT SYSTEMS

We now construct the perfect systems in ®, wherefore we present an algorithm
which is a modification of Algorithm 3.1 of {4] and results in a suitable dual. In
particular, application of the algorithm conforms with known results in the case of
the generalized symmetric groups in [1].

Let ® = B, with simple system 7 = {ai =¢—¢y (i=L.,n-1),a,= e,,}. Then
the Cohen diagram for @ is

O O CO=—
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where the node corresponding to ¢;(i =1,...,n) is denoted by i.

Definition 3.1 Let ® = B} with simple system 7 as above and let
7= {ail N TR 1) |{i1,...,i,}g {l,2,...,n}}
be a subset of 7. For me {1,...,t}, the root @; €m is called the maximum root in

7T, , written max{zr,}=a,-m, if max{il,...,i,}=im,
For AV 240> .. 4920, (=12.,m) and ¥°L, (A + 1+ X7, 35, 4D = n,

" , 1if i=1
let ¥ =3 > B beasubsystemof ® with m; =3
i=1j=1 ’1/' m if 1=2,3,...,m.
Then A™ = ((4‘) +1,., AD 41y, (A ,...,,1§'”))) is an m-set of partitions of .
1 m

If we put k(()l) =0, k§1) =/1§l) + A 4+ /1(1-1) +j(j=1,..,8) and

) i-1 s, . . . i .
K =kD 13 AP D < kD 4 4D 4D 4 AV =1,s) for i=2,3,.0m
voy=2j=1
then
1
Jl(cf.?) ={ak;1_)l+1,ak§2+2,...,ak;1>_1}

={ek}l-)|+1 —ek}?l+2 ,ekﬁ'l—)l_‘_z _ek}‘),+3 ,...,ek}l)_l -ek;l)}

Sy .
1s a simple system for BZ:}) and therefore JU = ZJI% is a simple system for
J j=1"7

5
ZBS(})) , and
Jj=1 7

J(’)=a.» o s O e,
B = T e a2 TP

={ 01 R0z K2 TR 37 RO k}
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is a simple system for B

. Si .
> Where i=2,3,.,m and therefore JO < ZJIE') is a
7

@
j=1
S
simple system for ZB% (i=2,3,..,m).
j=1 %

m .
Thus, J = ZJ(') is a simple system for ¥. Note that for any i e {1,2,...,m}, if

i=1

o N m S
s; =0 then we write k;-') =0 and JO = ¢, and in the §ubsystems v=3 Ei:BZf,') )

i=tj=1
for any i and j if AS?) =0 then we write B"f,'f) = ¢. The Cohen diagram for ¥ is
A )
m (a) @)

) w1 2

) )

that is, the nodes kl(i) R .,.,kg) ,(=12,..,m-1), kl(m) yeees ks(”'zl have been deleted

and the nodes e, €y ((=2,3,...,m—1), e (m,....em have been added. If
1 55 1 sm-1

we do not consider the nodes ey ""’eki,»i) (i=23,.,m-1), e(m ’""ekf,',,"iu which

have been added to the Cohen diagram of @ then we may look upon the simple

m S;
system J of the subsystem ¥ =Y > B™ as a subset of 7.

®
i=1j=1 Y
ms 1if i=1 .
Now,let ¥=> > B\ |m=< be a subsystem of @ with
i=1j=1 Aj m if l=2,3,...,m

simple system J such that
7rJ=J\{aeJla=ek, lskSn—l}gﬂ

m R R 5 R
where J=3J® with JO = ZJ% (i=1,..,m) being a simple system for
i=1 j=1

S;
> B (i=1,..,m).
j=1 J
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, S; ,
For J® = ZJ% (i=23,..,m), let
j=1 Y

T =74 \{a eI la=g, lsksn} (=23,.,m),
£l / 7

L §; ,
where j=1,..,s; for i=2,3,...m, andlet J9" = ZJ%,))* (i=23,.,m)..
=

Let 7\ 7, be the set of all the deleted nodes from the Cohen diagram of ®. Let
ﬂ'; be the subset of 7\7; such that each element in 7:} is connected to two
components J© and JU) of J for all pairs i # j in {2,3,...,m}, ie.

ﬂ}z{ﬂEﬂ\ﬂJ](ﬂ,a(i));ﬁO, (,B,a(j));tO for some a(i)eJ(i),a(j)eJ(j)}
where 7, j=2,3,...,m with i# ;.

Let 7/ =(z\z;)\z}. For i=23,..m, let 7’ ={ﬂ1(f),ﬂ(i’,...,ﬁ,fi)} be the

o,

subset of 77 such that each element in 77 is connected to two components of
N 0] .

J® (i.e. for each element y i (i=2,3,...,m) there exist two components of

J® (i=2,3,...,m) which have a node connected to ).
Suppose that 2" =t ‘Uz, 7" = {ﬂl(l),...,ﬂt(l) } Forv=1,2,...,4; let
1

I9=U{ 79 1 A9 #0 for some af) <) b

that is, the components of J which have a node connected to /351) .
For u=12,.,t (i=2,3,..,m) let

. - , . . S
HS)=U{Jf1'(}) ](a%?),ﬂ,g’)) #0 for some a/({g?) € J/({‘,’)’ },
(6=2,3,...,m) that is, the components of J @ which have a node connected to

D (=23 m).

Algorithm 3.2 (a) For each ﬂ‘gl) (v=12,..,4) let <I>9) be the root system with
simple system HS,I) U { ,B‘Sl)} and let nf,l) be the length of the longest positive root in
o).
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(i) Define recursively D‘(,},) (t= 1,...,n$,1)) as follows: Put DSI) = { 51)} and
DY, = {r.(B) (@ ) <0, a<TI{, g DV},
(ii) For each ,6’51) (v=1,...,4{) such that ﬂ‘gl) #e,, let max{ HQ) U{ Sl)}}= Q; =
e, —e.,1(1<i<n—1) be the maximum root in [IP U{,BQ) } For this maximum
root, choose e;,; € ®, and for ¢ = 1,...,n‘(,1) put

D,, = {a € D‘(,l,) {a,e,1) < 0}, and

D, = {Ta (e;v1)laeD,, }
(b) For each ﬂ,gi) (u=12,.,t), where i=2,3,...,m, let @g) be the root systerh
with simple system Hff) U{ ,Si) } and let n,ﬂi) be the length of the longest positive
root in CI),(f) .
Define recursively D,S’} (t= 1,...,nl(,i) ), where i=2,3,..,m, as follows: Put
S { ,Sf)} and DY), = {ra(ﬁ) (@, B)<0,aell?, Be D,S’}}(i =2,3,...,m).
Example 3.3 Let @ = B142 with simple system
7t={a,- = —e, ((=12,..11), o, =e12}. Let
Y= B; t +Bl4 Lt Bl4 2 4 B; 4 +Bl4 4 +B14 4 be a subsystem of B142 with simple system

J=IO+ D+ O ={e ey, €1 -e3, e4—es)U{es}U{eg — €9, €9 — €10, €r0,e11,e12}-
Then the Cohen diagram for ¥ is

11

The set 7t\7rj={a3,a5,a6,a'7,alo,all} and since (aq,e7)#0 and
(a7, ag)#0 for e7eJ(2) and ageJ(4) then zjz{a7} and soz” =

(n\nj)\n; ={a3, as, ag, Ay, a“}. For i=2,3,4 we have

77 =g, 1" =¢ and 117 ={ap, a1} amdso 27" =27 \UL,00 =

{0‘3’ s, a(,}.
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() Consider o Eﬂ",m as a deleted node. Then by part (a) of Algorithm 3.2,

NP ={e;-er, ey -5, 4 ~es}, and for max{ g U{“3}}= ¢ ~es, choose
es € ®. Then

D3(1) ={e3— ey} D3 =¢

DY) ={e;~ey, e5 - e5} Dj; ={es}
DY} ={ei-ey, e)—es5) Dy ={e}
D§}‘);={el—es} Di4={e}

(i) Consider a5 e ﬂj(l) as a deleted node. Then by part (a) of Algorithm 3.2,
ny = {e4 —es}, and for max{Hgl) U a5 }}= es —eg, choose eg € ®. Then

Dgl) {es e} Diy ={es}
D§,;={e4‘e6} Dz ={eq}
J(l)

(iti) Consider agernx as a deleted node. Then by part (a) of Algorithm 3.2,

Hg) =¢, and for max{l—[g) U a6}}= eg ~e7, choose e; € ®. Then
Df) ={es—er} D1 ={es}

. . 4
(iv) Consider oy e "

have

as a deleted node. Then by part (b) of Algorithm 3.2 we

10 —{98 — €, € —elo},
01 —{elo—eu}
Digh ={ ey —eyy}
DI(O,)3 = {es *611}
(4)

(v) Consider oy € 77" as a deleted node. Then by part (b) of Algorithm 3.2 we
have

1P = ¢ and Dm ={e) —ep2}
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On the other hand, the subsysttm W =B;11 +Bl4‘ +B142 +B§‘ +B14‘ +B14"
corresponds to the 4-set of partitions A4 = (321,1,0,311) of 12. Thus the
subsystem ¥ = B; ! +Bl4 ! +Bl4 24 B; 4 +Bl4 4 +Bl4“ is represented by the rows of
the A1) -tableau

2 3 8§ 9 10

5

7, ¢, 11
12

=

f- N N

Then its row stabilizer R, is W{ll 23)% W{14 5) % W{16} X W{‘,‘/} X W{‘; 9,10} ¢ W{;‘l} X W{‘I‘Z}
and its column stabilizer C; is W{;“‘ 6} X W{; 5} X W{g} X W{17} X W{i; i1 12} X W{lg} X W{llO} s
as in [1]. Now, put J'®=D0+Dj,+DY+Ds;+Dgy, /P =4 and
JI(4) = Dl(g,):‘! + Dl(‘,l‘,)l then J'(l) + J'(z) + J’(4) = {el —€4,64 —€4,€66,€) — €s5,€e5,e3 }
U{es —er1,e11 — e12} is linearly independent over C. If we put J'=
JD 4 @y @, then the  corresponding  subsystem P’ is
B; 't Bg '+ Bl4 s B; 4 with  simple  system J'. The  subsystem

Y= B; '+ B; '+ Bl4 '+ B; 4 is represented by the columns of the A4 tableau 1,
and so R, =W(J) and C, =W(J'). Thus, known results [1] in the representation
theory of the generalized symmetric groups gives that
J= {(J O, ;O @, @y, (4:4), (J @), ;@) } is a perfect system in Bl42.

Remark 3.4 Let ¥ be a subsystem of @ with simple system J as given earlier.

Then the subsystem ¥ is represented by the rows of the A tableau as in Remark
2.5 of [2]. Since the Algorithm 3.2 enables us to construct the subsystem ¥’ such

that its simple system J' is represented by the columns of the A _tableau, the
remainder of the paper shows that this is true in general. Furthermore, this work can

be translated to the language of ™) _tableaux in the generalized symmetric groups
context, that is, the key concepts (i.e. the useful systems, good systems, very good

systems and perfect systems) of this paper are reduced to the standard A™ tableaux.
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m s,'
Let ¥=3 > B

1 if i=1
[m,- ={ n J be a subsystem of @ with simple
i=lj=1 "

mif i=23,..,m

m
system J = > J @ as above. We now apply Algorithm 3.2 step by step to determine

i=1
m p
a subsystem ¥’ in ®\'¥ with simple system J' = 3" J"? such that
i=1
J= {(J(l);J’(l)), ey (U g7 (M) }
is a perfect system in ®. For this, we consider the following possible cases:
(1) Let ¥= B,':'_‘1 be a subsystem of @ with simple system J=J W=

{ai =¢—¢, (=12,..,n- 1)}. Then the Cohen diagram for B,'l"_‘1 is
1

2 n-1 ”n

JO

Consider a, ex s a deleted node. Then by applying part (a) of Algorithm 32

we obtain

Dr(llz ={ en-rat} (t=2,3,..,m).
Since o, =e,, we do not consider the part (a) (ii) of Algorithm 3.2.

On the other hand, the subsystem ¥ =B,'l'"1 corresponds to the m-set of partitions

Aml = (,0,0,...,0) of n. Thus the subsystem ¥ = B™, is represented by the row of

n-1
the A" _tableau
t=(12..n,8,...4).

Then its row stabilizer R, is W{ll o} and its column stabilizer C, is
1) _ & () ) g
W{;’ixW{'z"}x...x W{'r’:}, as in [1]. Now, put J'()=ED,,’, then J'® is linearly
independent over C. If we put J'=J'" then J' isa simple system for P’ = nB™"
with m =m. The subsystem ¥'=nB™ with m =m is represented by the

columns of the A" -tableau ¢, and so R, =zW(J) and C, =W (J'). It follows that
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J= {(J(l);J'(l)), (#:0), ...(¢;0) } is a perfect system in ®. Then we have the
following Lemma.

Lemma 3.5 Let ‘I’=B,',”_‘1 be a subsystem of ® with simple system given by

system J = JO = {ai =¢ —e, (i= 1,2,...,n—1)} and let ¥’ be the subsystem of
. : 1 ) _ 5 p®

D with simple system J'=J" =% Dpy. Then

t=1
J= {(J(l);J'(l)), (2:0), ...,(8;8) } is a perfect system in ®@.

5 5y
() For 5,22, AV 24P >..> ,121) >0 and jZ_jl(Ag.l) +)=n,let ¥= EIBZ’E;, (my =1)
be a subsystem of ®.
Put kP =0, k0 = A0 + 4D+ + AP +j (j=1,...5) then

1)
JO = {a a ey O }
k® kD1 SR 420 0 SpD g

§
is a simple system for BZ('{) and therefore J =J® = Zl:Jl(cl(?) is a simple system for

i j=1
5
¥ =3 B
J=l 7
The Cohen diagram for W is
1 - S AR

that is, the nodes 30 s k(l), s kD have been deleted.
1 2 5

By part (a)(i) of Algorithm 3.2, for v=1,2,..,5; we obtain §\Y: and

e
D,(cl(?)  Asts AV +1) as follows:

! 1 1 1 1
T, =780 UJQ (1sv<sy-1) and T ,51)” - Jlii?) ,

kO 4i-1 I<v<s -1
p® = a; kD +i-1<k® 1 for ie{l,....t ,
Kt {Fk%H_I il v+l ot 124D +1
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By part (a)(ii) of Algorithm 3.2, for 1<v<s -1,

: Q
ak.(,?r’l if J )

s #4 and IR %

max{ k“)U{ak“’}} oo if Jk(,) #¢ and JY =

ki
or if HE:()D =
For 1sv<s -1, if J( , #¢ and J((,) # ¢ then choose € € ® and consider
DIE?) I where 1<t< /19)‘ For iefl2,. ,ﬂ,gll +1}, we  have

kP +i<k® asvss -1, 1f AP =40, qsvss -1) then kP +i<kl) for
all ie{l,z,...,ﬂg)}, and so (@,e,n)=0 for all aepgg)’t (1<t<AD). Thus
Diw, =¢ (1<t<AV) and so D, =¢ a<t<AP).

If /19) > 1931 (1<v<s-1) then for i=12,. ,ﬂ(l)l we have k(l) +1i <k(1) and

(40 ) =0 forall ae D) —¢ (<t<AD ) and
k, v+1

Py (1<t ’19421) and so D

R

D, =¢ (ASt<AD).

For i=AD +1 (1sv<s;~1) we have k) +i =k, and (a, exo) <0 for some

1
ae Dl(c(?) .

= {ekil’, -t TGy, } (A +1s1<4D)

(/193_1 +1<t< /19)), and so

Dki‘) t

D, = {ekg‘_t} (D +1<e<aD).

For 1sv<s -1, if J((,) #¢ and JS(?) =¢ orif HS(),) #¢ then choose
€, € ® and so

Do, = {ekgn o) A< A0 1),

§
On the other hand, the subsystem ¥’ = Zl‘, BZ('}, corresponds to the m-set of partitions
j=t
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1 1
Am = ((/lg ) +1,...,1§|) +1),0,0,---,0)

s
of n. Thus the subsystem ¥ = El:Bij}) is represented by the rows of the ™ _tableau
J=t
1 2 L A

K+ kP2 o &P , 6 b 8

KD 1 kD 2
1 571

If we put

1 8 -1 1 ﬂ's'” lg)-‘-l
JO = > D,E(?) A941 +2 Dl’cf‘) 2t 2 Dk(l),t ’
v =1 t=1 1

v=l
then J'V is represented by the columns of the A™)-tableau ¢ and so J'® is
linearly independent over C.
If ¥' is a subsystem of @ with simple system J'=J ‘D then R, =W(J) and
C, =W(J'), where R, (resp. C,) is the row (resp. column) stabilizer of the A™-
tableau .

It follows that J = {(J(l); J’(l)) , (0:9), ....(9;0)} is a perfect system in ®. We
have therefore proved the following lemma.

5

Lemma 3.6 For 522, AV240>.24020 and Y (AP +)=nlet
1

j=1
s

Y= ZI:B;}, (m=1) be a subsystem of . Let k(()l) =0 and
J=t

k}l) = Agl) +oF /19) +j(j=12,..,51). For Jj=Lk..,5, let

O _{ } - m,
ka.) = ak}‘_),+1’ak,‘.‘_)‘+2’ “"ak,(."—l be a simple system for B,l(j“ and let

S
J=JW = ZIJI% be a simple system for ‘P.
ity

I

Let ' be the subsystem of @ with simple system
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_ W W
J'= J'(l) = Slzl D(l) + % Doy, v+ MZ+ D(l(? .
= k‘sl)’%l)“ bt k.t 5 kxl)’t

Then J ={(J; JOy #:9), ....(¢;4)} is a perfect system in .

R . . 5 R
(3) Let ie{23,..,m. For AP2D2.219>0 and zﬂg)=n, let
i j=l j
N

Y= El:BZ:,!‘) (m; = m) be a subsystem of @.
i j

J=1
fweput k) =0, kP = 40 + 20 + .+ 4D (j=1,2,...,5,) then

J ={a a s O e }
kD kD410 FED 420 o G010 GO

NS
is a simple system for B;'f;) and therefore J = J©) = ZJ,(C'(?) is a simple system for
J j=t
SI

A
j:l

that is, the nodes kl(i),kg"),...,ks(i)_1 have been deleted. By applying part (b) of
i
Algorithm 3.2, for u=1,2,...,s; —1 we have

N kD411 . .
DO =4 "% a; (kP +1-1<k{), -1 for ie{L,2,...1)
v J=kD 4=t

where IStsﬂ.ﬁi).
§;
On the other hand, the subsystem ¥ = )" B"/, corresponds to the m-set of partitions

(i}
s A

Am o, .,0,(40,.., 49, 0,...0)
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Si
of n. Thus the subsystem W= 3 B™ is represented by the rows of the Aml.

P
tableau
1 2 U %
(| #t 1S B AOFS T A% . b
0 0
ks:_1+1 ks:_1+2 . .on

" Now, for u=1,2,...,5; -1, put

© S 0
JH = Zl Dk(i) FION
u= w *tu

Then J' is represented by the columns of the A™ -tableau ¢ and so J'® is
linearly independent over C. If W' is a subsystem of & with simple system
J' =79 then R, =W(J) and C, =W(J'), where R, (resp. C,) is the row (resp.
column) stabilizer of the A™]-tableau ¢

It follows that J = {(¢;8),....(#;8),(JD;7' D), (#;#),....(#;4)} is a perfect system
in @. Then we have the following lemma.

. ‘ . 5
Lemma 3.7 Let ie{2,3,...,m}. For /l%') > 2,(2’) 2...21&') >0 and ZAS?) =n, let
i .
J=1

5
Y= ZIB;:;!'I) (m; = m) be a subsystem of ®.
j= :

Let k§) =0, k9 =20 + 4D +. .+ 4D (j=1,2,...,5,). For j=12,...5; let

0 -
ka,-, = {akﬁ?l+1, ak}?l+2, ...,ak}i)_l,ek;i) }
. Si .
is a simple system for BZ:;') and J=J® = ZJI% is a simple system for
J j=1 J
S; .
Y= ZBE:(?) . Let W' be the subsystem of @ with simple system
=17
L 5ol
J! - JI(I) - Z
u=l

®
b kAP



PERFECT SYSTEMS FOR SPECHT MODULES OF G(m,1, n) 51

Then J ={(#;4) , ...(8:6),(JO; 7'D), (4;9) , ...(#:4)} is a perfect system in
.

@) For A0 240224950 (i=12,..,m) and z(z“)+1)+zz AP =n,
! . j=1 k i=2j=1

1if i=
let ¥ = Z ZB > beasubsystemof @ with m; = 1 l
i=1j=1 4 mif i=23,...m

. i-1
If we put £’ =0, KO =P+ + 4D +j (j=12,..,5) and k(()‘)=ks(ll)+ 22
V=
2 0D <k + 20+ + 2D (j=1,2,...,5,) for i=2,3,..,m then
J_

=1 |
Jk(U EeO+p O 420 - F O

is a simple system for B"('}, and therefore J = ZJ ((,) is a simple system for
Jj=1 k5

ZBA(,) , and

J,E(?) {ak(l) +1° ak(') +23 aakj(j‘) —l’ekﬁi) ;

is a simple system for B;;;') (i=2,3,...,m) and therefore J& = ZJ (;,) is a simple
Jj=1

s; mo .
system for ZB/'{(‘I,?) (i=23,.,m). Thus J=3J D isa simple system for V.
j=1 i=1

The Cohen diagram for ¥ is

£ k(l) £, N s(m)ll ,1

T
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that is, the nodes &(7,...k® (i=12,..,m-1), kl(”‘),...,k(mz have been deleted. By
i

part (a)(i) of Algorithm 3.2, for v=12,.,s; we obtain H( kD and DO

k(l)
(<< AP +1) as follows: ngg) JIEI(?) Jlglg) (1<v<s -1) and n% - Jlg(g) ,
ki +i-1 1gv<s -1
,(cl(?) = > a; |ED +i- 1<k(1) -1 for ie{l,..,t} 11 ,
L ki 124D +1
1 b 1
D,E(?) = Z a; (1 <t=< ﬂ'-("l) + 1).

j=k® 41—
_k:l +1-¢

By part (a)(ii) of Algorithm 3.2, for 1<v<s; -1,
ak(u -1 if J (1) # ¢ and J’(cl(?) ¢

max{ kD U{ Zpw }} A it JU

i %4 and J<13) =4

or if ch‘)‘) =¢.

For 1sv<s -1, if J((U #¢ and JU

o) # ¢ then choose e e€® and consider

1
D](c(z) s

where 1<t < 21(,1). For ie{l2,..., /1(1) ath we have
kP +i<k® asvss -1, 1 AV =AY (<v<s -1 then kP +i <k, for

all ie{l,Z,...,ﬂg)}, and so (a, eku)) 0 for all aeD(l) (IStS/lg)). Thus

Dy, =¢ (1<r< V) and so D =9 a<r<iPy.

1f AD >0, (1svss -1) then for i=1,2,..,A%, we have kP +i<k®); and

(@ €,0) =0 for all aeD(?)’t (t<r<i®)) andso D

1
=9 @ <t<AN)) and

Do, =¢ (A<t<AD).

For z—l(l)l+1 (1<v<s -1) we have k(1)+z—k(l) and (a, ek(u)<0 for some

ae D(l)

oy (), +1<<4D), andso

1 I
Diw, = e —eyn | Ay +15254D)
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¢
Dk(l)

For 1<v<s -1, if J((D #¢ and JS(?, —¢ orif JI (,) #¢ then choose

= {ek(n) _t} (/1(14)_1 +1$ts/19)).

ek§‘>+1 € ® and so

D;c“) e {ek‘f’) +l—t} (sz< ’19) +1).

By part (a)(ii) of Algorithm 3.2, for v=ys, max{Hk(l) U{ak“) }}:ak(x) and
51

choose €41 € @ and so Dk“) {ek(u e } (st< ﬂg) +1).

By part (b) of Algorithm 3.2, for u =1,2,...5; ~1 (i =2,3,...,m) we have
kD +1-1 .
Dgg) =1 X o kD +1-15k8) -1 for ie{1,2,...1)
=k +1-t
where 1srsﬂ§j) fori=23,..,m
On the other hand, the subsystem ¥ = Z ZB b corresponds to the m-set of
i=1j=1 %
partitions
A _(® e, 4D +1),...,(,1§'"),...,/1§':))) of n.

Thus the subsystem ¥ = Z ZB 0 is represented by the rows of the A™ -tableau

...111 j
t below
1 7 A SRR T s T 1
m—l m-1
K41 kP42 o0 kD K™ 41 kf'”)+2 A A
W o1 0 .y L0 m ™ .
koLl kL2 kg ksm”‘_1+1 kg2 42 om

Now, for v=12,...,8; -1, put

51 P AV 41
14 { 1 ! '
7O - > DIE(Z) 041 +> Dk(l),t + ) ka,t s
=1 =1 "
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and for u=12,...,5;, -1 (1=2,3,...,m), put

L T
JO=F DR ) (=23,..,m).
s

m . m .
Then 3 J'® is represented by the columns of the A" -tableau andso 3 J'® is
i=1 i=]
linearly independent over C. If W' is a subsystem of @ with simple system
m .
J'= ZJ'(’) then R, =W(J) and C, =W(J"), where R, (resp. C,) is the row
i=1
(resp. colurmn) stabilizer of the A™ -tableau .
It follows that J = {(J(l);J'(l)),...,(J(m);./"(”‘))} is a perfect system in ®. Then we
have the following theorem.
. R ] 5 R
Theorem 3.8 For AV 210224920 (i=12.,m) and 3D +D+
L j:l
m $; m S;

3 Zﬂy) =n, let Y=Y ZBZ:,') be a subsystem of @  with
i=2j=l1 i=lj=1

1 if i=1
m; =
Polmif i=2,3,...,m.

: i-1 3,
Let k=0, k}l) =,?1(1)+...+,1(j1) +j (j=12,..,5) and =k§11)+ 22 21’15“))’
v=2 j=

KD =k + A0 4.4+ 4D (j=1,2,..,5) for i=23,.,m. For j=1,2,..,5;, let
O _
J kD = {“k}‘),w R }
be a simple system for BZ('}) and for j=12,..,s; (i=2,3,..,m) let
j
J(i)- ={a ) [24%¢ [24%)) e (i)}
k](-') kj’-l+1’ k;l-)l+2 seres kj -1° kj

m .
be a simple system for B/';,'?, (i=2,3,.,m). Let J=>J ) pea simple system for
] i=1

A0

m S; r 5 .
w=3 3By, where JO = 3 U0 (1=1,2,..,m).
i=1j=1 " j=t

Let ¥’ be the subsystem of @ with simple system
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m s, -1 " 40 AP +1 m s, -1 o
(i < z k 3 i
J'=Z-]()=Z Dy o+ 2D 1+ 2 Dy +2 2 Db o-
O L A0 (A R S U kDA

=1 v=1 t i=2u=1

Then J ={(J/V; /Dy (7™, J™)} is a perfect system in ®.
OZET

Weyl gruplarmin reprezantasyonlarmin kombinatoryal ingasin vermede mitkemmel
sistemler ¢ok onemli bir rol oynar. Bu makalede, G(m,1,n) tipindeki kompleks kok
sistemler ile ilgili milkkemamel sistemleri elde etmek i¢in bir algoritma veriyoruz. Bu
algoritmay: kullanarak G(m,1,n) kompleks yansima gruplarmm Specht modiilleri
i¢in bir baz buluyoruz. Bu algoritmanin uygulamasi genellestirilmis simetrik
gruplarin  reprezantasyon teorisindeki bilinen sonuglarla tam bir uyum
gostermektedir. Boéylece, kok sistemlere gore G(m,1,n) grubunun indirgenemez
reprezantasyonlarinin kombinatoryal insas1 tamamlamig olur.
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