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ABSTRACT A method for true random number generation by directly sampling a high frequency chaotic jerk
circuit is explored. A method for determination of the maximum Lyapunov exponent, and thus the maximum bit
rate for true random number generation, of the jerk system of interest is shown. The system is tested over
a wide range of sampling parameters in order to simulate possible hardware configurations. The system is
then implemented in high speed electronics on a small printed circuit board to verify its performance over
the chosen parameters. The resulting circuit is well suited for random number generation due to its high
dynamic complexity, long term aperiodicity, and extreme sensitivity to initial conditions. This system passes
the Dieharder RNG test suite at 3.125 Mbps.
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INTRODUCTION

Chaos and randomness have gone hand-in-hand since the incep-
tion of the idea that both natural and man-made systems could
produce wildly different behaviors given seemingly identical con-
ditions. There has always been a struggle to determine the outcome
of future processes given only present information, but the feasibil-
ity of these endeavors has only recently been quantified in terms
of entropy and randomness. Efforts to achieve this understand-
ing have shed light on the inherent nonlinear dynamics. As such,
these properties can be exploited to achieve a randomness that can
be understood and measured, yet retain the useful unpredictable
nature of these dynamics.

Security and communications systems today, including finan-
cial security, RFID, and cryptography, rely on this idea of random-
ness Sundaresan et al. (2015); Volos (2013). Specifically, these tech-
nologies depend heavily on random bits being readily available
to process into various encryption schemes. It is important that
the random numbers in these systems exhibit various statistical
properties that are indicative of a theoretically perfect random se-
quence. These are qualitatively grouped into terms such as “strong”
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or “weak” random numbers. If the random numbers are less than
ideal or lack statistical randomness, the biases and dependencies
in the bit stream can potentially compromise encrypted systems.
Thus, it is imperative that the random numbers can be trusted
to be theoretically random. In order to evaluate the statistical
properties of random numbers, the bit sequences are submitted to
various RNG tests, many of which are bundled into test suites such
as NIST’s Statistical Test Suite for Random and Pseudorandom
Number Generators for Cryptographic Applications and Duke
University’s Dieharder Random Number Test Suite Bassham III
et al. (2010); Brown et al. (2013). Most systems today use a pseudo-
random number generator (PRNG), since they are easily integrated
into electronic systems; however, true random number generators
(TRNGs) provide fundamental advantages since their numbers are
truly “random” in addition to statistical randomness.

PRNGs are exceptional choices for producing statistically ran-
dom numbers quickly, even though they lack true randomness.
These pseudorandom bit sequences are produced using various
algorithms, which range in both computational requirements and
complexity Akhshani et al. (2014); Han and Kim (2017); Li et al.
(2010). Because there are no physical processes limiting these al-
gorithms, the implementation of the algorithm can be made as
fast as possible, and pseudorandom numbers can be made when
needed without regard to lack of supply. However, the fact that
these RNG schemes are entirely software based presents inherent
weaknesses to the strength of these schemes. First, an exact replica
of the scheme can be copied across many systems. For this reason,
if a portion of the sequence is known, the rest of the sequence
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can be extrapolated. Second, the initial state of the system (e.g.,
the “seed”) exactly determines all future outputs of the system.
Hence, the true randomness of PRNGs is extremely low despite
their adoption throughout electronic, security, and communication
systems.

Rather than producing statistically random numbers that can
be replicated at will, true random number generators instead are
based on a physical process (here, a chaotic circuit) that generates
entropy. After the chaotic circuit generates entropy, a method is
used to extract a bit of information from the dynamic response.
Together, the chaotic system and the method of bit extraction may
be considered a TRNG. One method for quantifying the entropy in
a system of interest is in terms of a maximum Lyapunov exponent
(MLE). This is the rate of divergence of two trajectories with almost
identical initial conditions that are allowed to propagate in time.
The maximum Lyapunov exponent also determines the maximum
rate at which truly random bits can be extracted from the system
Wolf et al. (1985). In essence, new information is available from the
system at a specified rate, and once that information is extracted,
there is a period of time before new information is available to be
extracted again. Thus, a system with a large MLE gets this new
information, and thus random bits, faster than a system with a
small MLE.

Characteristics such as sensitivity to initial conditions, aperiod-
icity, and spread spectrum power density make chaotic systems
ideal candidates for true random number generation Guinee and
Blaszczyk (2009); Ergun and Ozoguz (2007); Pareschi et al. (2009);
Blaszczyk and Guinee (2008). Chaotic systems that can be rep-
resented by sets of differential equations have the ability to be
quantified as potential RNGs both from the ideal equations and
from the implementation in hardware Valtierra et al. (2017); Sprott
(2000); Tavas et al. (2010); Saito and Fujita (1981). Unfortunately,
most chaotic systems that can be easily described with differential
equations often do not lend themselves to simple electronic circuit
implementation, while processes that are seemingly chaotic can
be difficult to quantify accurately without prior knowledge of the
underlying mechanics of the system.

Since the final goal of a TRNG is to get bits from a physical
hardware process into a digital system, a scheme for forming these
random bits from a process must be chosen. Many methods to
achieve this are available, including sampling the process with an
analog-to-digital converter, observing resulting clock jitter, and
multiple oscillator sampling Cicek et al. (2014). Although the cal-
culation of a maximum Lyapunov exponent in a system sets the
maximum rate at which bits can be extracted from the system, there
is no information determined about which bit sampling method to
use. Often, the bit sampling method will necessitate using various
post processing techniques to correct for the biases inherent in
most sampling techniques of these physical systems. This is done
to ensure the statistical randomness needed in order to pass the
stringent testing that is required for random number generators
Pareschi et al. (2010).

THE IDEAL JERK CHAOTIC SYSTEM

Many third order differential equations that exhibit chaotic behav-
ior have previously been explored by Sprott Sprott (2010). These
systems are known as “jerk” systems, because of their dependence
on the third derivative with respect to time. Jerk systems have
been implemented as a Josephson junction circuit Yalçin (2007), a
diode-based circuit design Njitacke et al. (2017), and a smoothly-
adjustable nonlinearity circuit Kengne et al. (2019).

This work focuses on a jerk oscillator that has a nonlinear term

that is easily implemented in electronics: a signum function. Specif-
ically, each of the integration stages can be implemented with op-
erational amplifiers, and the signum function can be implemented
as a high speed comparator Harrison et al. (2016). The jerk system
of interest is given below as a third order differential equation in
(1) and (2).

...
x = −0.5ẍ − ẋ − x + sgn(x) (1)

where

sgn(x) =

{
+1, x ≥ 0

−1, x < 0
(2)

The nonlinearity in this system is caused by the signum function.
The nonlinear dynamics for this type of system was well-defined
by Sprott Sprott (2010). A modern implementation of this circuit
using a comparator instead of a saturated operational amplifier
is used in the current paper. A phase space plot of this system is
shown in Fig. 1.

Figure 1 The ideal jerk equation’s simulated phase space.

Next, the maximum Lyapunov exponent of the system needs
to be estimated so that the maximum bit rate for random num-
ber generation can be found. The method chosen to accomplish
this is a direct measurement of the divergence rate for many pairs
of simulated trajectories that have almost identical initial condi-
tions. The sensitivity of these chaotic systems to initial conditions
causes trajectories that are different only by an amount well below
measurement thresholds of real systems to quickly diverge. The
MLE is then calculated by comparing the inital offset between the
two systems with the time it takes for the difference in trajectories
to reach a chosen threshold. This calculation is given with the
following equation:

MLE =
ln( threshold

o f f set )

time
(3)

where threshold is the chosen divergence limit, offset is the initial
difference in states of the two trajectories, and time is the final time
taken to reach the threshold. Then, this translates into a theoretical
maximum bit rate as follows:
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bitrate =
MLE
ln 2

≈ 1.443 ∗ MLE (4)

The bit rate given in eq. (4) has units of s−1.
For the jerk system, 1000 time domain simulations are per-

formed in order to determine the MLE by using a MATLAB script
to implement the differential equations with a fixed time step.
Initial conditions for both systems (the x, ẋ, and ẍ states) are ran-
domized such that they were between −1 and +1, so that the
trajectories remain in the chaotic region of the attractor rather
than becoming globally unstable. Then, a very small offset (be-
tween 10−12 and 10−8) is applied to the second system’s x state.
The threshold limit is chosen to be between 10−4 and 10−1. The
systems are then simulated forward in time until they reach the
specified threshold. After this point, the systems diverge quickly.

The resulting MLE from many simulations with various initial
conditions, thresholds, and offsets are between 0.152 and 0.153 for
the jerk system. The MLE calculated in Sprott (2000) for the same
system when using another method with some approximations is
similar to this value. This then gives a bit rate of 0.218 and 0.221
bits per second. Examination of the system reveals that the system
has a natural “pseudo frequency” of oscillation (when considering
the time to complete one orbit around half of the attractor) of
approximately 0.2 Hz. Thus, the bit rate of the system itself is
approximately 1 bit per cycle. By framing the bit rate this way,
the system can be scaled to any frequency, and the bit rate will
remain constant with respect to the system. Specifically, when the
system is implemented at high frequency in an electronic circuit,
the circuit will be able to generate random bits at this higher natural
frequency, as long as the system is represented accurately.

RANDOM NUMBER GENERATION

In order to obtain random bits from the system, the system is
sampled at a fixed rate using an analog-to-digital converter (ADC).
There are a number of different parameters for an ADC that can be
chosen in regards to sampling, including voltage range, sampling
frequency, and bits of resolution. In order for the jerk system to
be a true random number generator, the sampling parameters
of the ADC, which samples the system to produce bits that are
statistically random, must be determined. These parameters are
then replicated in hardware, and the physical electronic circuit is
sampled in order to get truly random bits.

Simulation of an ADC sampling the system is achieved in MAT-
LAB by implementing the jerk system equation. The 32-bit floating
point value for x (since the x variable is sampled in hardware)
is then converted to an n-bit sample value based on the chosen
resolution of n bits and the ADC’s maximum voltage. Successive
samples are taken at approximately the natural pseudo frequency
of the jerk system (i.e., at 0.2 Hz). For each sample, every bit of the
sample except the lowest bit is discarded, and the lowest remaining
bits are concatenated to form 8-bit random bytes.

The Dieharder test suite is used to evaluate the bit sequences
generated from this simulation. There are 114 tests of randomness
in this suite, but some tests are simply variations of other tests.
However, in evaluating the sequences for randomness, the 114 tests
are viewed as independent. Each test returns a P-value between 0
and 1, which is interpreted as follows: a P-value that is between
0.005 and 0.995 is considered to have passed that test, and a P-
value of exactly 0 or 1 is considered to have failed. P-values that
are under 0.005 and above 0.995 are “weak” and can be further
resolved to either pass or fail through more testing. Due to the
amount of data that Dieharder requires, some sequences that are

actually random will produce weak P-values in approximately 1%
of tests. An example output of Dieharder is shown in Fig. 2.

Figure 2 Partial output of Dieharder testing. More tests and re-
sults are given than are shown here.

The P-values returned by the Dieharder tests are such that if
the tested bit sequence is statistically random, the P-values are
uniformly distributed from 0 to 1. This allows for both individual
test results and the results from the Dieharder suite as a whole to
be analyzed quickly. This can be visually represented by plotting
the test results versus a uniform distribution, in order to see the
agreement. An example of this process is shown in Fig. 3 for simu-
lation and hardware results. The P-values are sorted in ascending
order (the type of test for each P-value is not taken into account)
when plotted as a cumulative frequency against a straight line (the
uniform distribution). Although this is only simulated data, it
provides a baseline from which to build a hardware system that
closely matches the parameters from the simulation equation and
the analog-to-digital converter. From this testing, it is discovered
that bit sequences gathered from ADC resolutions below 10-bits
do not pass the Dieharder suite, indicating that these sequences
are not statistically random. Above the 10-bit resolution mark, the
P-values from the generated bit sequences are close to the desired
uniform distributions.

These simulation test results are performed by sampling at 1
bit per cycle, and almost ideal results are obtained at the 12-bit
resolution level. When the sampling frequency is increased to 2.5
bits and 5 bits per cycle at 12-bits of resolution, the bit sequences
still pass most or all of the Dieharder test suite. These plots indicate
that statistically random bits can be obtained from a system that
is sampled faster than the maximum Lyapunov exponent dictates
for true random number generation. Thus, it is imperative that
the implementation of the random number generation take into
account the theoretical limitation for true randomness. Beyond
this limit, the system as a whole cannot be truly random, even
though statistical randomness might be achieved at a higher bit
rate.

HARDWARE CIRCUIT DESIGN AND TESTING

The circuit presented in this paper, which is shown in Fig. 4,
includes additional components to make testing easier. Preliminary
simulations of this circuit were presented in Harrison et al. (2019),
and a preliminary design of this circuit was described in Harrison
et al. (2016) and Harrison et al. (2017). Specifically, the current
circuit has pin headers used to power the board that are exchanged
with a micro USB connector to enable power to come directly from
a number of readily available power sources, including a host
computer with an open USB port or a mobile battery bank for
testing inside of an enclosed space. A PMOS transistor is placed
after this connector in order to apply power to the rest of the circuit
in a more controlled fashion (via unshorting a jumper on the board
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Figure 3 Cumulative frequency plot of Dieharder test results from simulating the 16th bit of an ADC in software, and hardware imple-
mentation of ADC sampling of the jerk circuit at 3.125 MSPS.

from ground) than just plugging in the connector. Also, in testing
previous versions of the board, it was discovered that the circuit
could enter a periodic railing state upon being powered, but it
could then be forced into the normal chaotic state by temporarily
shorting the x node of the op amp integrators to ground.

A small momentary switch is added to this node to facilitate
this correction. Finally, the signum output is taken from the –Q pin
on the comparator so as to not interfere with the Q signal in the
feedback path. The Q pin is the signum output of the comparator,
which is directly connected to the rest of the feedback summing
circuitry. In earlier versions of the board, probing this pin directly
caused some undesired changes to the chaotic attractor, since the
oscilloscope loaded the pin. Essentially, if probed, the signum
output would no longer be accurate. To remedy this, the chip has
a –Q output that can be probed instead, which can be inverted if
needed. By probing the –Q pin, this leaves the Q output undis-
turbed. As another solution, the Q output could instead have been
buffered with another chip (e.g., an operational amplifier), but the
current board was designed with a minimal part count in mind.
The pseudo-fundamental frequency of the board was maintained
at 4 MHz. A picture of the front and back of the updated board is
shown in Fig. 5.

It should be noted that the 15kΩ resistors are a deviation from
the ideal operational amplifier integration circuit, and, in fact, these
convert the ideal integrators into active amplifier circuits with a
low pass filter. Since the gain of these integrators was high, the
operational amplifier integrators could easily saturate on startup,
which would prevent oscillations from occurring. The 15kΩ resis-
tors prevent saturation of the feedback capacitors. The 15kΩ value
for these resistors was found from trial and error: a resistance that
is too high causes the capacitor to saturate, while a resistance that is
too low causes the oscillations to be considerably damped (e.g., the
chaotic signal would stay on each side of the attractor for too long
before switching, which reduces the Lyapunov exponent of the
implemented circuit). This value was chosen for good oscillation
characteristics compared with the ideal circuit.

Figure 4 A schematic of the electronic implementation of the jerk
oscillator.

For testing of this circuit as a true random number generator,
ADC sampling is achieved using a Handyscope HS6 USB Oscil-
loscope from TiePie Engineering connected to a host computer
running the provided MultiChannel software. The circuit is pow-
ered from a USB port on the same computer. The HS6 allows for
up to 16 bit streaming ADC sampling, but at that resolution the
sampling speed is limited to 3.125 MS/s, slightly less than the
desired 4 MS/s to achieve a 1 bit per cycle random output. The
full scale voltage of the ADC is chosen to be ±2 V since the circuit
has peaks of approximately ±1 V when AC coupled to the oscillo-
scope and powered using the single 5V supply from the USB port.
This results in a loss of approximately 1 bit of resolution when
compared to a full scale voltage that is smaller, but the next lowest
supported by the MultiChannel software is 800 mV. A screenshot
of the circuit being sampled in this software is shown in Fig. 6.
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Figure 5 The front and back of the populated circuit board that
implements the jerk equation at 4 MHz.

Figure 6 Data readout from the Handyscope HS6 from the hard-
ware circuit.

32 GB of data is collected from the x node of the circuit at 3.125
MS/s and then split using a MATLAB script into sixteen 2 GB
files, one with each separate bit of the 16-bit samples concatenated
together. These files are then subjected to Dieharder testing in the
same manner as the jerk equation simulation data. These results
are shown in Fig. 3.

For the hardware circuit, the bit sequences pass most of the
Dieharder tests starting at the 13th bit and do not fail any tests
at the 16th bit of the ADC sample. At the 12th bit and above, the
sequences systematically fail certain sets of tests, most notably the
sts_serial and rgb_lagged_sum series of tests. These tests involve
skipping many bits in a row and thus the input file is rewound
multiple times for each of these tests. This can potentially make the
bit sequence seem like it is repeating itself, but this is unavoidable
with this setup of Dieharder without a much larger input file size.

A concern for this method of sampling (i.e., taking one bit per
sample of a high resolution sample) is that the lowest bits are
masked by noise in the system, and thus the randomness ulti-
mately achieved may be due to noise and not to the chaotic dynam-
ics in the system. Although the noise floor is a useful metric for
linear systems, noise and nonlinearity can produce unintuitive dy-
namics. For instance, noise can cause a system undergoing chaos
to become regular Lepik and Hein (2005), but it can also drive a
system undergoing regular motion to become chaotic Perkins and
Balachandran (2012). Further, noise can cause stochastic resonance
Perkins and Balachandran (2015), modify the hysteresis curve of
nonlinear oscillators Perkins (2017); Perkins and Fitzgerald (2018),
affect the dynamics of intrinsic localized modes in coupled oscil-
lator arrays Perkins et al. (2016); Balachandran et al. (2015), and
cause learning to be degraded in an adaptive oscillator circuit Li
et al. (2021).

In order to investigate whether the noise had an effect on the
randomness of the jerk oscillator, two additional tests are per-
formed using Dieharder. In the first test, the +5V power rail on
the board is used to generate random bits using the same sam-
pling parameters at the 16th bit of resolution. In the second test,
a separate chaotic circuit with higher fundamental frequency is
likewise sampled. Both of these bit sequences fail the majority of
the Dieharder suite with 2 GB input files. If the sampling or ther-
mal noise in the jerk chaos board was providing the randomness
in order to pass Dieharder, then the sequences generated from the
noise should pass the test suite. These results show that the statis-
tical randomness achieved using this particular nonlinear circuit
and bit extraction technique is likely coming from the nonlinear
dynamics, instead of from electronic noise.

Although there is no real way to prove randomness, the results
from the Dieharder RNG test suite indicate that the jerk circuit is
able to provide statistically random bits from a hardware source
under various circumstances. This test suite is widely used to strin-
gently test pseudorandom number generators with much larger
bit sequences available on demand. Since the chaotic jerk circuit is
implemented in a small form factor with commercial off the shelf
components, it can easily be integrated into other systems requir-
ing truly random bits at high speeds. The test results from both
the simulated and hardware TRNG are in good agreement with
each other. Overall, the jerk oscillator circuit is an ideal candidate
for random number generation.
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CONCLUSION

A scheme for extracting true random numbers directly from a
chaotic jerk system is shown. This system is implemented in high
speed electronics on a small printed circuit board and sampled in
accordance with the necessary parameters found from the simula-
tion results. The bit sequences generated from the physical system
pass the Dieharder Random Number Generator test suite, which
enables this system to function as a fast random bit generator for
many different applications. Overall, this system shows high dy-
namic complexity in a compact form, which is desirable for a true
random number generator.
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