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ABSTRACT. Inthe present paper, we introduce the Bézier variant of the Srivastava-Gupta operators, which preserve
constant as well as linear functions. Our study focuses on a direct approximation theorem in terms of the Ditzian-Totik
modulus of smoothness, respectively the rate of convergence for differentiable functions whose derivatives are of
bounded variation.
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1. INTRODUCTION

Srivastava-Gupta [19] presented the following summation-integral type operators defined
as follows:
(L1) Gl Fi) =13 pns(@,0) [ pusesafOdt+ poala, OF0),
k=1 0

where

pn,k(xv C) = (_aj)k ¢5£2(x)a

with the following special cases:

(na)®

Kl
(n/c)s __ (cx)*
k' (1+cx)eth’
() Ifc=—1and ¢, (z) = (1 — )", then p, x(z, —1) = (})zF (1 — )"~

Gupta [12] introduced the general class of Durrmeyer type operators and studied some di-
rect results. In [16], the authors considered the Bézier variant of the operators (1.1) and es-
tablished the estimate of the rate of convergence of these operators for functions of bounded
variation. Kajla and Acar [17] constructed mixed hybrid operators and established quantita-
tive Voronovskaja type theorems, local approximation theorems and weighted approximation
properties for these operators. Verma and Agrawal [23] presented the generalized form of the
operators (1.1) and obtained some approximation properties for these operators. Acar et al. [3]
proposed Stancu type generalization of the operators (1.1) and studied the rate of convergence
for functions having derivatives of bounded variation and also discussed the simultaneous ap-
proximation for these operators. Recently, Neer et al. [18] introduced the Bézier variant of the

(1) If c=0and ¢, () = e "%, then we get p,, x(z,0) = e ™"

(2) ¢ =Nand ¢, .(x) = (1 + cx)~"/¢, then we obtain p,, x(z,0) =
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100 A. Kajla

operators which is proposed by Yadav [22] and obtained several approximation properties.

Gupta [11] introduced a modification of the operators (1.1) as

Une(fiz) = (n+20)2pn+0,k(m,0)/0 Pr+3e,k—1(t, ¢) f(t)dt

k=1
(12) + Pn+tc,0 (l‘, C)f(O)

It is important to note here that these operators preserve constant as well as linear functions.
The r*"(r € N) order moments are given by
I'((n/c)—r+2)T(r+1)

I((n/e)+1)ert

o F (%+2,1—7’;2;—cm), forc=NU{-1},

Un,c(er7 I) =
(nz)r!
n"

1F1 (1 —r;2;—nx), for ¢ = 0.

Srivastava and Gupta [20] got the rate of convergence for the Bézier variant of the Bleimann
Butzer and Hahn operators for functions with bounded variation. In 2007, Guo et al. [15] stud-
ied Baskakov-Bézier operators and established direct, inverse and equivalence approximation
theorems with the help of Ditzian-Totik modulus of smoothness. Very recently, Agrawal et
al. [5] introduced mixed hybrid operators for which they got direct results and the rate of con-
vergence for differentiable functions whose derivatives are of bounded variation. Many other
interesting Bézier type operators were studied by several researchers, cf. [1,2,4,6,7,9,10,13,14,
21,24,25].

For 6 > 1, we present the Bézier variant of the operators U, . f defined by

U fie) = (n+20) QY (z,0) / Prtsen—t(t, ) f(t)dt
k=1 0

)

(1.3) +Q)(x, ) £(0),

where Q') (z,¢) = (Jax(2,0) = (Jurs1(2,0)°, with Jo (2,¢) = Y purej(z,c). For 6 = 1,
j=k

the operators U,(lf)c) f reduce to the operators U,, . f.

Alternatively we may rewrite the operators (1.3) as

oo

(1.4) Ul (f;z) = / Pog.c(z, t)f(t)dt, x € [0,00),

0

where
P, o.c(z,t) = (n+2c) ZQ ) (z,¢)Pnt3ek—1(t,c) + Qg%(:c,c)é(t),
k=1
0(t) being the Dirac-delta function.

The aim of this paper is to introduce the Bézier variant (1.3) of the Srivastava-Gupta oper-
ators, which preserve linear functions. Our further study focuses on a direct approximation
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theorem in terms of the Ditzian-Totik modulus of smoothness, respectively the rate of con-
vergence for differential functions whose derivatives are of bounded variation on every finite
subinterval of (0, c0), for the presented operators (1.3).

2. AUXILIARY RESULTS

Throughout this paper, C denotes a positive constant independent of n and x, not necessarily
the same at each occurrence. For these new operators (1.3) we establish some auxiliary results.
The monomials e (z) = z¥, for k € Ny called test functions play an important role in uniform
approximation by linear positive operators.

Lemma 2.1. Forany n € N, the images of test functions by Gupta operators (1.2) are given by

2x(1
Uncleosz) =1, Uneclensz) =2, Upcleaz) = 2%+ M

n
Consequently,

2.5) Une ((t — 2)% ) = M

Lemma 2.2. Let f be a real-valued function continuous and bounded on [0, 00), with || f|| = sup |f(z)],

z€[0,+00)

then [Upc(f)] < || f]]-

Lemma 2.3. Let f be a real-valued function continuous and bounded on [0,00) and 6 > 1, then
US| < 01711

Proof. Applying the well known property [a* — b%| < aja — b|, with 0 < a,b < 1, a > 1 and the

definition of fo}c (x,c), we have

(26) 0< (Jn,k(mvc))e - (Jn,k+1(m>c))9 < 9(‘]“,/6(337 C) - Jn,kJrl(xv C)) = 9pn+0,k($)'
Hence, from the definition of Uy(fc) (f) operators and Lemma 2.2, we get

U ()] < 01U ()] < 0 fI-

Remark 2.1. We have

UL o) (eorz) = > QY\(x.¢) = [Juo(z,0))
k=0
6

anJrc.,j (33) =1
=0

In order to present our further results, we recall from [8] the definitions of the Ditizian-Totik
modulus of smoothness. Let p(x) = \/z(1 + cx), then

e () o))
0<h<t zthp(z)/2>0

and the appropriate Peetre’s K -functional is defined by
Ko(f,t) = inf {|If — gl +tlleg'I}, t>0,
g€V,
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where V,, = {g € C[0,400)|g € ACoc[0,+0),|l¢g|| < co}. According to Th. 3.1.2, [8], it is
well known that K, (f,t) ~ w,(f,t), which means that there exists a constant M > 0, such that

(2.7) M w,(f,t) < K,(f,t) < Mwy(f,t).
3. DIRECT THEOREM

Now we are able to prove the following direct approximation theorem in terms of Ditzian-
Totik modulus of smoothness.

Theorem 3.1. Let f € Cg[0,00) and 6 > 1, then for any x € [0, 00), we have

68) U - )| < 0w (1,22,

where C'is an absolute constant.
Proof. By the definition of K, (f,t) and the relation (2.7), for fixed n,z, we can choose g =
9n.x € V,, such that
(39) 17 = gll + —=lleg' Il + ~llg'll < wo £, 5=

. g \/ﬁ ¥g n gl = Wel /s \/ﬁ .
Using Remark 2.1, we can write

TN =1 < TULS —ga) | +1f = gl+ | ULUgi2) — g() |

(3.10) < Cllf —gll+ [ ULUgs2) — g(2) |-

We only need to estimate the second term in the above relation. We will have to split the
estimate into two domains, i.e. = E Ff = [0 1/n] and z € F,, = (1/n,00).
Using the representation g(¢) = g(x) + f g'(u)du, we get

n?c(g;x) —g(x) U}fg([ g (w)du; x)‘ .

Ifz € F, = (1/n,00), then UL ((t — x)%;2) ~ 220%(x). We have

/: g'(u)du| <

For any z,t € (0,00), we find that

e

(3.11)

t

1
3.12 ——dul.
(.12 L o™

———du
z Vu(l+ cu)

[ (G e
2(\/1%—\/%+ \/(1+ct)—\/(1+cw))

c

IN

= 2|t_f”|<\/ii\/§+\/(1+Ct)+1\/(1+cx))
1 1
(7 7)

2(c+1) |t — x|
clc—1) wl@)

A

21t —x

(3.13)
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Combining (3.11)-(3.13) and using Cauchy-Schwarz inequality, we obtain

U9(g:2) — g()] ff;tfﬂwym:%wa%Ur—uw>
2 o) (08 250
2§;+]i)|¢g|w71<x>(ethﬁ<u—-xf;x>)lﬁ

Now applying the relation (2.5), we get
(3.14) U (g5 2) — g(x)] < C"\%”.

For z € F¢ = [0,1/n], U ((t—2)%2) ~ 2% and

/zt g (u)du

Therefore, using Cauchy-Schwarz inequality we have

< lg'll [t = xl.

V20 C
(3.15) U g5 2) = g(@)| < ||g'[|[USA([t = xl;2) < Clg’ HT < —llg'll
From (3.14) and (3.15), we have
@), lleg'll
(.16) 02a:0) - gl < o (L2 4 Lyg).

Using K, (f,t) ~ wy(f,t) and (3.9), (3.10), (3.16), we get the desired relation (3.8). This com-
pletes the proof of the theorem.
O

4. RATE OF CONVERGENCE

Let f € DBV, (0,00), v > 0, be the class of differentiable functions defined on (0, co), whose
derivatives f’ are of bounded variation on every finite subinterval of (0, 00) and |f(¢)| < M¢?,
for all t > 0 and some M > 0. The functions f € DBV, (0, c0), could be represented as

f@) = [ syt + 100,
0
where ¢ is a function of bounded variation on each finite subinterval of (0, c0).

Lemma 4.4. Let x € (0,00), then for 0 > 1 and sufficiently large n, we have

: Y Op ¢*(2)

? Cn, e\ T, Y :/ P, cxtdt< , 0<y<ua,

) Cn0.c(T, ) | e (z,1) o (I_y)g »

. > Op o
“)1_Cn,9,c(xyz):/z PnQC(x t)dt< n (Z—],‘)Z’ CL’<Z<OO,

where p > 2.
Proof.
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i) Using Lemma 2.3 and (2.5), we get

y y 5
—t
Groela) = [ Paoelastiar < [ (9” ) Poge(e,t)dt
Yy
0 0

< Ut —2)%2) (2 =) 7% < OUne((t — )% 2) (@ —y) 2

2
S@ # (@) , 0<y<ua.
n (z—y)
i1) The second relation can be proved analogously. O

Theorem 4.2. Let f € DBV, (0,00), 0 > 1and \/ (f2) be the total variation of f, on [a,b] C (0, c0).
Then, for every = € (0, c0) and sufficiently large n, we have

U fix) - fa)] < 9& Fa+) +0f (@ ‘\f /2 ey ) - )
: +1
p(1 Op(1 +cx) cx) x
(f2)
bp(1 + cx) ) W7 Jatafi , T
£
where p > 2 and the auxiliary function f; is defined by
, F)=f@—), 0<t<w
ft)—f(z+), z<t<l
Proof. Since /OO P g.c(z,t)dt = U(e )(eo; ) = 1, we can write
0
VNS = 1@) = [0 = 1@) Pao et
417 = "(w)du | Py g o(z,t)dt.
(4.17) /0 </mf(u)u> 0.z, t)dt
Using definition of the function f7, for any f € DBV,,(0, ), it follows
1 1 0—-1
70 = g7 (P 4076 ) + 120+ 5 (£ - 7/e)) (ssnte - )+ 577
@1 £0.0(7/@) - 5 (7@ 4 10)),

where
1, xz=t

51(”:{ 0, z#t.

/ Pz, /( ( "(z4) + f'(x )))5w(u)dudtzo.

It is clear that
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Using the definition of operators (1.4), then simple computations lead us to

= [T ([ g (ren+oreo) i) Puacte. o

:Gil a4) +0f (@ ‘/ [t — 2| Pogo(a, )t
(4.19)
< 1 (p of U 2 00) "’ < 0
< g (a0 07 @) ) (U —2pim) < 25 ) +0f @
and

Ey = /OOO (/: % <f’(a:+) — f’(m—)) <sgn(u — )+ E)du) Ppo.c(z,t)dt

< gl = )| [ =l Pug ooyt = 51| a) = 1oV = ol )
(4.20)
/ 3/2
< gt - f’(z—)‘ (Ué?i ((ex — z)r";oﬁ))1 < 99+1 f(a4) - f’(m—)'\/gw(x)

Involving the relations (4.17)-(4.20), we obtain the following estimate
0
US)(F:2) = F(@)| < [Anao(F1r2) + Buoel )| + 5o |F/at) +67 (2 ’\f

93 /2
(4.21) o |f'(x+) = f'(z—)] \[

where
Apo.c(f / </f du) P, g.c(z,t)dt
and
Buactfon) = [ ([ 5w Paa(o e
Fora complete proof of the theorem, it remains to estimate the terms A,, ¢ .(f2, z) and B, ¢ .(f5, x).

Since fa diCn0.c(z,t) < 1,forall [a,b] C (0,00), using integration by parts and applying Lemma
44 withy = x — (x/+/n), it follows

| A p.c(frr T |—’/ (/f du)dtgnecxt‘
(/ /> )| 1Cn0.c(x,t)| dt

e”‘p /\j/ 2dt+/t\j/(f;)dt

eAc
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Taking u = z/(x — t) into account, we get

2 z—z/f @ vnoo®
pe*(x) 2 p(1 + cx)
t z—x/u
z Vnl =
1+C$ Z /k+1 \/ (1+C.f) \/ ’
(f2)-
z—z/u " k=1 z—z/k

Hence, we reach the following estimation

WVnl] = @
p(1+ cx)
(4.22) A g.e(fh )] < V \ ).
\/ﬁ
k=1 z—z/k z—z//n

Using again the integration by parts and applying Lemma 4.4 with z = x 4+ x/+/n, it follows

Bl )] = /m</ﬂzum)awcawm
- I(/f do@1—%9&W»+lm([ﬂWM0¢ﬂ—%m®ﬁ)
~[[([f 72w 1) (1= Guaelet)] = [ 200 oo clo )i

([ o) (1 = G, 0)

- ( Zf; du) 1= Cnoelz, 2)) /f — Cno.c(z,t))dt

+< )1©w4xt] - [T 200 - G

= f()(l_Cnec(l't dt+/ f 1_<n90(x t))dt‘

)2t +/ \/(f;)dt

e

(4.23) <0”‘p m/\r\/ it —a)” 2dt+7 \V ()

Taking u = z/(t — z) into account, we get

t

00 fat+x/u
o P¥* (@) / \/(f/)( )24t = apso /
z+x/

n
(1 k+1 ”f”/“ [f ] r+x/k
(4.24) <9p + cx) / 1+ cx) Z \/
Using the relations (4.23)- (4.24), we get the following estimation
[f Ja+a/k z+z/\/n

(4.25) |Brg,e(for )| < }j v ¢* \/ ().
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The relations (4.21), (4.22) and (4.25) lead us to the desired result. O
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