
PAPER DETAILS

TITLE: Security Analysis of Java SecureRandom Library

AUTHORS: Kenan INCE

PAGES: 157-160

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/1653909

Avrupa Bilim ve Teknoloji Dergisi

Özel Sayı 24, S. 157-160, Nisan 2021

© Telif hakkı EJOSAT’a aittir

Araştırma Makalesi

www.ejosat.com ISSN:2148-2683

European Journal of Science and Technology

Special Issue 24, pp. 157-160, April 2021

Copyright © 2021 EJOSAT

Research Article

http://www.ejosat.com/ 157

Security Analysis of Java SecureRandom Library

Kenan İnce

İnönü University, Faculty of Engineering, Departmant of Computer Engineering, Malatya, Turkey, (ORCID: 0000-0003-4709-9557), kenanince@gmail.com

(2nd International Conference on Access to Recent Advances in Engineering and Digitalization (ARACONF)-10–12 March 2021)

(DOI: 10.31590/ejosat.900956)

ATIF/REFERENCE: İnce, K. (2021). Security Analysis of Java SecureRandom Library. Avrupa Bilim ve Teknoloji Dergisi, (24),

157-160.

Abstract

Java is one of the most used programming languages. Developers use java language in all of their projects, embedded systems or as a

background service provider for different frontend applications. In today's world where security gains importance day by day, the

reliability of security libraries of programming languages is also gaining importance.

One of the common research area of computer security is random number generation. Most of the cryptographic applications require

random numbers. Many different approaches exist for secure random number generation. However, most of them are academic for

today. For this reason, it is more common to use libraries that are available in programming languages. In this study, a comprehensive

analysis of Java SecureRandom library by means of security is presented. NIST 800-22 test suit is used for randomness tests.

Keywords: SecureRandom, Java Security, NIST 800-22, Randomness Tests.

Java SecureRandom Kütüphanesinin Güvenlik Analizi

Öz

Java en çok kullanılan programlama dillerinden biridir. Geliştiriciler java dilini projelerinin tamamında, gömülü sistemlerde veya farklı

arayüz projeleri için servis katmanında kullanmaktadırlar. Güvenliğin her geçen gün önem kazandığı günümüzde, programlama

dillerinin güvenliğinin bütünlüğü önem kazanmaktadır.

Rasgele sayı üretimi, bilgisayar güvenliğinin en önemli araştırma alanlarından biridir. Bir çok kriptografik uygulama rasgele sayılara

ihtiyaç duyar. Güvenli rasgele sayı üretimi konusunda bir çok çalışma yapılmıştır. Fakat bunların bir çoğu günümüz için akademik

seviyede kalmaktadır. Bu sebeple programlama dillerinin içerisinde hazır bulunan kütüphanelerin kullanımı daha yaygındır. Bu

çalışmada, Java SecureRandom kütüphanesinin güvenlik anlamında detaylı bir analizi sunulmuştur. Rassallık testleri için NIST 800-22

Rev1a test ortamı kullanılmıştır.

Anahtar Kelimeler: SecureRandom, Java Güvenliği, NIST 800-22, Rassallık Testleri.

Avrupa Bilim ve Teknoloji Dergisi

 158

1. Introduction

According to Tiobe Index of January 2021, Java is the second

highest rated programming language. Also, same study shows that

java always in the top three programimng language after the year

2001 (TIOBE 2021). It is expected that such a widely used

rogramming language will be able to meet the needs of time.

Security is an important requirement as well as reliability and

platform independence. For his reason, various studies carried out

on security analysis of java and java related applications.

Feng et al (2011), in his article, he presents a new approach

by java byte-level flow analysis. By doing this, he claims this

method can be used as an assistant to reveal byte code

vurnelabities.

Martínez et al (2017) investigate Java EE Access control

mechanism on web security due to misconfiguration. They

propose a reverse engineering model for analyzing anomalies and

they share this application on Github.

Paul & Evans (2006) compare two major platform by means

of security which are Java and .NET. Basically, they show how

.NET prevent vulnerabilities that are exists in Java. They also

mentioned that .NET benefited from past experiences of Java. By

shielding some details from developers, they prevent mis

configuration on policies.

Another study on Java security is done by Herzog &

Shahmehri in 2005. They explore the slowness of Java security

manager. Because, especially thinking the time they investigate

the performance of Java security manager, time and space

complexity of programming language mechanism is important by

any means. They present 20 execution times in a table format.

They find out that the when the resource Access done under

security manager, the execution time increase approximately

100% by comparing to resource access without security manager.

Another Java related security study is evaluation of Java

Scure Socket Extention (JSSE) usage. They point out due to the

complexity of the application programming interface (API) of

transport level security (TLS) leads developers to mis use of

security mechanism and this result in vulnerabilities in their

application. They study with 11 developers to identify usability

issues of JSSE and they show that the abbsraction layer is the main

reason of misusage (Wijayarathna & Arachchilage, 2019).

The main motivation of this study withstands to following

facts:

1. Random number generation is a crucial task in

cryptography.

2. Although there exist many secure random number

generators (SRNGs), they recuire extra investigation and

implementation.

3. Java is the second highest rated programming language

today.

Considering the above acceptances, it is evaluated that

security anaylsis of SecureRandom library (which extends default

Java.util.Random library) of Java programming language is very

important and required. Furthermore, according to out

investigation, no study exists on SecureRandom library.

2. Material and Method

2.1. Random Number Generation

Random number generators (RNG) categorized in to two

main classes, deterministic and non-deterministic. Determinism

means that is it possible or not to reproduce same sequence of

random numbers which is generated previously. As a result, if an

RNG does not depends on physical events the randomness of the

generator must be tested.

Nondeterministic methods also can be divided into two main

categories which are physical and computational RNGs (Saldamli

& Koc 2009). Java SecureRandom library is in the computational

non-deterministic RNG category. In theory SecureRandom

library is cryptographically strong RNG (Oracle JavaSE-8, 2021).

In literature there exists many RNG studies focus on chaos

theory (Katz et al, 2008; Stojanovski and Kocarev, 2001), FPGA

(Thomas and Lok, 2013; Akçay et al, 2017), electron transistor

(Uchida et al, 2007) etc. All these studies focus on more secure

and reliable random number generation. However, while all

programming languages have random libraries, many developers

rely their applications’ security, if needed, on these standart

libraries. Because, it is hard to implement thecniques on many

academic studies for developers. Besides, random libraries are

ready and easy to use.

2.2. Randomness Test Suites

There exist some statistical test suites for testing a sequence

is random or not. Most commonly used test suites are NIST 800-

22 (Lawrence et al, 2010), Diehard and Dieharder (Brown, 2021),

ENT Utility (Walker, 2008) and TestU01 (L’ecuyer & Simard,

2007). The most prefered test suite in literature is NIST. NIST test

suite consist of 15 different statistical test which is shown in Table

1. Table 1 also shows relative minimum bit length requirement to

be able to produce meaningfull results according to suite

documentation.

Table 1: NIST Tests and Relative Minimum Bit Length

Recommendation

Test Name Min Len

1 Frequency (Monobit) 100

2 Block Frequency 100

3 Runs 100

4 Longest Run of Ones 128

5 Binary Matrix Rank 38912

6 Discrete Fourier 1000

7 Non-Overlapping Template Matching 1000000

8 Overlapping Template Matching 106

9 Universal Statistical 387840

10 Linear complexity 1000000

11 Serial 32

12 Approximate Entropy 127

13 Cumulative Sums 100

14 Random Excursions 1000000

15 Random Excursions Variant 1000000

European Journal of Science and Technology

 159

2.1. Random Number Generation Algorithm

It is known that standard random number generation libraries

in widely used programming languages are use system time. As

a result, if an attacker finds out the generation time of random

number, he/she may generate same random number or sequence.

To overcome this problem, standard RNG libraries in

programming languages uses seed. A seed is the initial starting

point of generation. If a complex seed is given, more secure

number generation will be acquired.

In addition to standard random number libraries,

SecureRandom library gives developers to select some generation

predefined algorithms. Table 2 shows algorithm that are present

in Java Cryptography Architecture

Standards.

Algorithm Name Platform

NativePRNG Linux, Mac

NativePRNGBlocking Linux, Mac

NativePRNGNonBlocking Linux, Mac

PKCS11 -

SHA1PRNG Linux, Mac, Windows

Windows-PRNG Windows

In this study, it is preferred to use SHA1PRNG due to

platform independence. PKCS11 library is dependent on

installing the related libraries separately. Other algorithms run

under stated platforms without any other requirement except JDK

8 or higher.

2.3. Application

The application developed in Mac Big Sur operation system.

Also, relative percentages tested on Windows 10 machine. The

presented results are mean of both platforms. Simple activity

diagram of the application presented in Figure 1.

Figure 1: Block diagram of the test algorithm

In order for the application results to be valid, a random

number sequence consisting of 1000 samples was tested 1000

times and the average rate was obtained. Obtained results

presented in Table 3.

Table 3: Application result percentages

Test Name True

Percentage

1 Frequency (Monobit) 98.9

2 Block Frequency 99.51

3 Runs 98.81

4 Longest Run of Ones 99.23

5 Binary Matrix Rank 99.19

6 Discrete Fourier 98.55

7 Non-Overlapping Template Matching 24.4

8 Overlapping Template Matching 84.98

9 Universal Statistical 98.82

10 Linear complexity 99.02

11 Serial 97.77

12 Approximate Entropy 98.9

13 Cumulative Sums 99.03

14 Random Excursions 57.64

15 Random Excursions Variant 57.77

3. Results and Discussion

According to the results, the library generates

cryptographically secure sequences. However, while the sequence

length increase, the reliability percentage drops.

Both “Random excursions” and “Random excursions

variant” tests rely on cumulative sum random walk. They test

some arbitrary fixed length sequence cumulative sums repeats or

not. Also “Non-Overlapping template matching test” rely on

aperiodic patterns. It analyzes the existing of these patters. As a

result, it can be said that SecureRandom library shows weak

security requirements with pattern tests.

Avrupa Bilim ve Teknoloji Dergisi

 160

5. Acknowledge

This work was supported by the projects of the İnönü

University Scientific Research Projects Depart-ment (SRPD)

numbered FBG-2018-1107 and FBG-2020-2143. The author

would like to thank İnönüUniversity SRPD for their valuable

feedback.

References

TIOBE 2021, TIOBE Index for January 2021,

https://www.tiobe.com/tiobe-index/, Last accessed: Jan 17

2021.

Z. L. Feng, T. Hong, H. M. Huan, K. X. Hui and J. Qi (2011),

"Checking Java Bugs by Data Propagation Analysis," 2011

First International Conference on Instrumentation,

Measurement, Computer, Communication and Control,

Beijing, 2011, pp. 861-864, doi: 10.1109/IMCCC.2011.217.

Salvador Martínez, Valerio Cosentino, Jordi Cabot (2017),

Model-based analysis of Java EE web security

misconfigurations, Computer Languages, Systems &

Structures, Volume 49, 2017, Pages 36-61, ISSN 1477-8424,

https://doi.org/10.1016/j.cl.2017.02.001.

Nathanael Paul, David Evans (2006), Comparing Java and .NET

security: Lessons learned and missed, Computers & Security,

Volume 25, Issue 5, 2006, Pages 338-350, ISSN 0167-4048,

https://doi.org/10.1016/j.cose.2006.02.003.

Almut Herzog, Nahid Shahmehri (2005), Performance of the Java

security manager, Computers & Security, Volume 24, Issue

3, 2005, Pages 192-207, ISSN 0167-4048,

https://doi.org/10.1016/j.cose.2004.08.006.

Chamila Wijayarathna, Nalin Asanka Gamagedara Arachchilage

(2019), Why Johnny can’t develop a secure application? A

usability analysis of Java Secure Socket Extension API,

Computers & Security, Volume 80, 2019, Pages 54-73, ISSN

0167-4048, https://doi.org/10.1016/j.cose.2018.09.007.

Saldamli G. and Koc C. K. (2009), Random Number Generators

for Cryptographic Applications, in Cryptographic

Engineering, Springer.

Oracle JavaSE-8 (2021), Class SecureRandom,

https://docs.oracle.com/javase/8/docs/api/java/security/Secu

reRandom.html, Last Accessed: Jan 17 2021.

Lawrence E. Bassham, Andrew L. Rukhin, Juan Soto, James R.

Nechvatal, Miles E. Smid, Elaine B. Barker, Stefan D. Leigh,

Mark Levenson, Mark Vangel, David L. Banks, Nathanael

Alan Heckert, James F. Dray, and San Vo. (2010). SP 800-22

Rev. 1a. A Statistical Test Suite for Random and

Pseudorandom Number Generators for Cryptographic

Applications. Technical Report. National Institute of

Standards & Technology, Gaithersburg, MD, USA.

Robert G. Brown (2021), Robert G. Brown’s General Tools Page,

https://webhome.phy.duke.edu/~rgb/General/dieharder.php,

Last Accessed: Jan 17 2021.

John Walker (2008), A Pseudorandom Number Sequence Test

Program, https://www.fourmilab.ch/random/, Last Accessed:

Jan 17 2021.

L’ecuyer, P. and Simard, R. (2007). TestU01: A C library for

empirical testing of random number gen-erators. ACM Trans.

Math. Softw. 33, 4, Article 22 (August 2007), 40 pages.

DOI=10.1145/1268776.1268777 http://doi.acm.org/10.1145/

1268776.1268777

O. Katz, D. A. Ramon and I. A. Wagner, (2008), "A Robust

Random Number Generator Based on a Differential Current-

Mode Chaos," in IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 16, no. 12, pp. 1677-1686,

Dec. 2008, doi: 10.1109/TVLSI.2008.2001731.

T. Stojanovski and L. Kocarev, "Chaos-based random number

generators-part I: analysis [cryptography]," in IEEE

Transactions on Circuits and Systems I: Fundamental Theory

and Applications, vol. 48, no. 3, pp. 281-288, March 2001,

doi: 10.1109/81.915385.

D. B. Thomas and W. Luk, "The LUT-SR Family of Uniform

Random Number Generators for FPGA Architectures," in

IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 21, no. 4, pp. 761-770, April 2013, doi:

10.1109/TVLSI.2012.2194171.

L. Akçay, E. Çil, A. Vardar, İ. Yaman, R. Yeniçeri and M. E.

Yalçın, "Implementation of a chaotic time-delay RNG based

secure communication system on FPGA," 2017 10th

International Conference on Electrical and Electronics

Engineering (ELECO), Bursa, 2017, pp. 1277-1280.

Ken Uchida, Tetsufumi Tanamoto, Shinobu Fujita, Single-

electron random-number generator (RNG) for highly secure

ubiquitous computing applications, Solid-State Electronics,

Volume 51, Issues 11–12, 2007, Pages 1552-1557, ISSN

0038-1101, https://doi.org/10.1016/j.sse.2007.09.015.

