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Abstract: In this study, a simulation of the theoretical calculation of Lattice thermal conductivity of Bismuth 

bulk and nanowires with diameters of 98, 115, and 327 nm in the temperature range of 10 ‒ 300 K and pressure 

range of 0 ‒ 1.6 GPa was investigated.  The theoretical approach was compared with experimental data obtained 

from the literature with the same diameters. These calculations were achieved by using the Morelli Callaway 

model and the Clapeyron equation that both longitudinal and transverse modes are taken into account. Melting 

temperature, mass density, unit cell volume, mean bond length, lattice parameter, group velocity and 

longitudinal and transverse Debye temperature for all transverse and longitudinal modes were calculated for 

each NW diameter mentioned. Controlling heat transfer by changing mechanical pressure can be an important 

achievement in practice. The results of this study show that pressure causes different changes in the amount of 

heat transfer at different temperatures, so that as pressure increases, the amount of heat transfer decreases.  

 

Keywords: Callaway model, Lattice thermal conductivity, Hydrostatic Pressure, Bismuth, Nanowires 

 

1. Introduction 

 

Since the beginning of the new century, electronics have hugely influenced technological 

development.  As Moore’s law states, roughly every two years the number of transistors on a 

microchip doubles. This law has been valid for the last 50 years and it appears to be still valid for the 

next few years.  With the ongoing reduction of feature sizes, the components of a microchip can be 

scaled down without changes in their performance [1]. Nanowires (NWs) have many current and 

prospective applications in electronics, they can be made using different techniques using metals, 

semimetal, or semiconductors. The lattice thermal conductivity (LTC) (κL or κ for simplicity) refers 

to the ability of the heat transfer through a sample that has a temperature difference at both ends, 

which is considered to be one of the most important thermoelectric parameters in determining the 

efficiency of energy conversion of thermoelectric materials. Due to the importance, in most energy 

techniques, lattice thermal conductivity (LTC) of crystalline materials is having great interest in 

academic and industrial research [2]. The theoretical approach in the calculation of (LTC) for 

different kinds of materials is very important for science and technology. It would help in 

understanding the dissipation of heat in microelectronic and nanoelectronics [3]. Modified Callaway's 

theory can be used to calculate lattice thermal conductivity (LTC) for different kinds of nanowires 

such as Bismuth nanowire.  

 

Bismuth, which is a semimetal, has unique electronic properties because of its low density, the small 

effective mass (𝑚𝑒𝑓𝑓 ≈ 10−3𝑚𝑒 , where 𝑚𝑒 is the free electron mass ) and the long mean free path 

of the carriers (about 2 μm at 300 K and up to 1 mm at 4.2 K), high de Broglie wavelength, strongly 

anisotropic and small Fermi surface. These properties are of high interest for future applications of 

electronic quantum confinement effects in low-dimensional bismuth structures [4]. It also has a 

relatively easy ability to fabricate. Bismuth nanostructures have a very wide interest as applications 
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in electronics/optoelectronics, biomedical, energy storage and conversion, and thermoelectric [5]. 

Bismuth nanowires of less than 100 nm diameter have attracted much attention in theoretical and 

experimental studies because of their small electron-effective mass that allows the study of quantum 

confinement effects at a diameter of (~40 nm). However, few direct measurements of Bismuth 

thermal conductivity have been made, which has a significant interplay between electrons, holes, and 

phonons as heat carriers [6]. In Bismuth, thermal conductance is mainly achieved by the electronic 

contribution from 100 to 300 K, while thermal conductance below 50 K is mainly achieved by 

phonons [7]. Also, the thermoelectric properties of Bismuth nanowires show improvements compared 

to the bulk material. Superconductivity has been observed for a Bismuth nanowire with a diameter of 

72 nm with a clear Shubnikov de Haas effect below the superconducting transition temperature [8].  

 

The efficiency of thermoelectric devices based on the thermoelectric figure of merit (ZT) value of a 

given material, defined as 𝑍𝑇 = 𝑆2𝜎𝑇/𝜅. Single-crystalline Bismuth nanowires have been of great 

importance due to the expected quantum confinement effect, which should enhance the power factor 

without significantly affecting κ [9].  

 

In this paper we adopted a simulation which is based on a modified Callaway model to calculate the 

LTC of Bismuth for bulk and nanowires with diameters of (98, 115, and 327 nm) at pressures of up 

to 1.8 GPa. The results were compared with experimental data, which can be found in the literature 

[9]. 
 

2. Theory and Calculations 

 

A useful way to calculate the lattice thermal conductivity is to use the Debye-Callaway model within 

the relaxation time approach, The relaxation time in the model can be written as a function of the 

Debye temperature (𝜃), the phonon velocity (𝑣) and the Grüneisen parameter (𝛾). 

 

The lattice thermal conductivity of a material is given by a mathematical model developed by 

Callaway [10] based on the Boltzmann distribution which is composed of two terms: 

 

                        𝜅 = 𝜅1 + 𝜅2            (1) 

  

                       𝜅1 =
1

3
𝐴𝑇3 ∫  

𝜏𝑐 𝑥4𝑒𝑥 

(𝑒𝑥−1)2  𝑑𝑥
𝜃/𝑇

0
,      (2) 

  

                      𝜅2 =
1

3
𝐴𝑇3

[∫
𝜏𝑐 𝑥4𝑒𝑥

𝜏𝑁(𝑒𝑥−1)2

𝜃
𝑇

0
𝑑𝑥]

2

[∫
𝜏𝑐 𝑥4𝑒𝑥

𝜏𝑁𝜏𝑅(𝑒𝑥−1)2𝑑𝑥

𝜃
𝑇

0
]

                      (3) 

where 

𝐴 =
𝑘𝐵

4

2𝜋2ℏ3𝑣
        (4) 

 

𝑥 =
ℏ𝜔

𝑘𝐵𝑇
        (5) 

 

where kB, ћ, 𝜃, 𝑣, 𝑇  and 𝜔 are the Boltzmann constant is 1.38 × 10−23 m2kg/sK, the Plank reduced 

constant equal to 1.05 × 10−23Js, the Debye temperature, the acoustic group velocity, the absolute 

temperature, and the phonon frequency, respectively. 

 

In these equations, 𝜏𝑅 is the scattering time due to resistive processes, 𝜏𝑁 is the scattering time due to 

normal phonon processes, and 𝜏𝑐
−1 = 𝜏𝑅

−1 + 𝜏𝑁
−1 is the combined scattering rate [11, 12]. 𝜅 depends 
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on the total phonon relaxation time 𝜏𝑐 and the temperature of the material at which the sample is 

being measured.  

 

There are different processes that scatter phonons are assumed to be independent of each other and 

to be denoted by individual scattering rates 𝜏𝑖
−1 [13]: 

 

            𝜏𝑐
−1 = ∑ 𝜏𝑖

−1
𝑖  (6) 

  

  𝜏𝑐
−1 = 𝑎𝜔4 + 𝑏𝑇3𝜔2𝑒−𝜃/𝑇 +

𝑣

𝐿
                                           (7) 

 

where 𝑎𝜔4 represents the isotope scattering, 𝑏𝑇3𝜔2𝑒−𝜃𝐷/𝑇 is the Umklapp process, and (
𝑣

𝐿
) is 

boundary scattering, and a and b are constants [14].  

 

The development of the Callaway model was proposed by Asen-Palmer et al. [15]. He successfully 

modelled the LTC for Ge based on three acoustic modes, where κ is written as a sum of one 

longitudinal (𝜅𝐿) and two transverse (𝜅𝑇) acoustic phonon branches [16, 17], 

 

          𝜅 = 𝜅𝐿+𝜅𝑇 + 𝜅𝑇 (8) 

where 

          𝜅𝐿 = 𝜅𝐿1
+ 𝜅𝐿2

 (9a) 

          𝜅𝑇 = 𝜅𝑇1
+ 𝜅𝑇2

  (9b) 

 

𝜅𝐿1
and 𝜅𝐿2

are the usual Debye-Callaway terms given by [18]: 

 

    𝜅𝐿1
=

1

3
𝐴𝐿𝑇3 ∫  

𝜏𝑐
𝐿 𝑥4𝑒𝑥 

(𝑒𝑥−1)2  𝑑𝑥
𝜃𝐿
𝑇

0
,     (10) 

 

     𝜅𝐿2
=

1

3
𝐴𝐿𝑇3

[∫  
𝜏𝑐

𝐿 𝑥4𝑒𝑥 

𝜏𝑁
𝐿 (𝑒𝑥−1)2

 𝑑𝑥
𝜃𝐿/𝑇

0 ]

2

∫  
𝜏𝑐

𝐿 𝑥4𝑒𝑥 

𝜏𝑁
𝐿  𝜏𝑅

𝐿 (𝑒𝑥−1)2
 𝑑𝑥

𝜃𝐿/𝑇
0

 (11) 

 

and similarly, for the transverse phonons [19],   

 

      𝜅𝑇1
=

1

3
𝐴𝑇𝑇3 ∫  

𝜏𝑐
𝑇 𝑥4𝑒𝑥 

(𝑒𝑥−1)2
 𝑑𝑥

𝜃𝐿/𝑇

0
,  (12) 

 

      𝜅𝑇2
=

1

3
𝐴𝑇𝑇3

[∫  
𝜏𝑐

𝑇 𝑥4𝑒𝑥 

𝜏𝑁
𝑇 (𝑒𝑥−1)2

 𝑑𝑥
𝜃𝑇/𝑇

0
]

2

∫  
𝜏𝑐

𝑇 𝑥4𝑒𝑥 

𝜏𝑁
𝑇  𝜏𝑅

𝑇 (𝑒𝑥−1)2
 𝑑𝑥

𝜃𝐿/𝑇
0

,  (13) 

 

       𝐴𝐿 =
𝑘𝐵

4

2𝜋2ℏ3𝑣𝐿
, (14a) 

 

       𝐴𝑇 =
𝑘𝐵

4

2𝜋2ℏ3𝑣𝑇
, (14b) 

 

𝐿 and 𝑇 are the longitudinal and transverse phonons, respectively, and 𝜃𝐿 and 𝜃𝑇 are Debye 

temperatures for the longitudinal and transverse phonon branches, respectively, which represent the 

temperature of crystal’s highest mode of vibration.  
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The value of Debye temperature can be obtained by using [20]:  

 

       𝜃𝐿(𝑇) = (
𝜔𝐿(𝑇)𝜋2

𝑉
)

1/3
ћ 𝑣𝐿(𝑇)

𝑘𝐵
, (15) 

 

where V is the volume per atom and 𝜔𝐿(𝑇) longitudinal (transverse) phonon frequency. This equation 

can be applied when there is no pressure. 

 

Another important factor that effects lattice thermal conductivity is the relation between melting 

temperature and pressure. Melting temperature 𝑇𝑚(𝑃) of stable bulk Si in the diamond structure 

decreases as the pressure P increases, or 𝑑𝑇𝑚/𝑑𝑃 <  0 [21]. 

 

The classic Clapeyron equation may be useful to obtain the T–P curve theoretically in the following 

relation [22]: 

 

        𝑑𝑃 =
𝐻𝑚(𝑇𝑚,𝑃)

∆𝑉𝑚(𝑇𝑚,𝑃)𝑇𝑚
𝑑𝑇𝑚 (16) 

 

where 𝐻𝑚(𝑇𝑚, 𝑃) and ∆𝑉𝑚(𝑇𝑚, 𝑃)𝑇𝑚 are the molar melting enthalpy and the molar volume change 

during melting respectively. 

 

In order to solve the Clapeyron equation we may assume a first-order approximation as 𝐻𝑚(𝑇𝑚, 𝑃) ≈
𝐻𝑚(𝑇𝑚) and ∆𝑉𝑚(𝑇𝑚, 𝑃) ≈ ∆𝑉𝑚(𝑃) which simplifies equation (16) to   

 

      𝑑𝑃 =
𝐻𝑚(𝑇𝑚)

∆𝑉𝑚(𝑃)𝑇𝑚
𝑑𝑇𝑚 (17) 

 

In equation (17) the 𝐻𝑚(𝑇𝑚) function can be obtained from the Helmholtz function [23]: 

 

     𝐻𝑚(𝑇𝑚)  =  𝐺𝑚(𝑇𝑚)  − 𝑇𝑚 𝑑𝐺𝑚(𝑇𝑚)/𝑑𝑇𝑚, (18) 

  

where 𝐺𝑚(𝑇𝑚)  is the temperature dependent solid–liquid Gibbs free energy difference.   

 

     𝐺𝑚(𝑇𝑚) = 𝐻𝑚0𝑇𝑚(𝑇𝑚0 − 𝑇𝑚)/𝑇𝑚0
2   (19) 

 

where 𝑇𝑚0 is the melting temperature at P = 0, for bulk state 𝑇𝑚0  equal to 𝑇∞  while NW with a 

diameters (r) represented by 𝑇𝑚(𝑟),  and 𝐻𝑚0 is the bulk molar melting enthalpy at 𝑇𝑚0.  

 

    𝐻𝑚𝑇𝑚 = 𝐻𝑚0(𝑇𝑚/𝑇𝑚0)2  (20) 

 

In equation (17),  

 

  ∆𝑉𝑚(𝑃) = (𝑉𝑙 − 𝑉𝑠) + (∆𝑉𝑙 − ∆𝑉𝑠), (21) 

 

𝑉𝑠 is the molar volume of the crystal and  𝑉𝑙 is the molar volume in the liquid state. 

 

∆𝑉𝑙 = −𝑉𝑙𝑃𝑙𝐾𝑙       and         ∆𝑉𝑠 = −𝑉𝑠𝑃𝑠𝐾𝑠 
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To find a solution of equation (21), a relationship between two pressures of 𝑃𝑙 and 𝑃𝑠 must be found. 

Therefore, we consider aspherical particle with a diameter 𝐷, then the Laplace–Young equation,   

𝑃𝑠  =  4 𝑓/𝐷 and 𝑃𝑙 =  4𝛾 /𝐷  for the particle in a solid state and in a liquid state, respectively, where 

𝛾 is the surface energy and ƒ is stress [24]. Then 𝑃𝑠/𝑃𝑙 = 𝑓/𝛾, substituting this relationship into 

𝛥𝑉𝑚(𝑃): 

 

                   𝛥𝑉𝑚(𝑃) = 𝑉𝑙 − 𝑉𝑠 + [𝑉𝑠𝐾𝑠 − 𝑉𝑙(𝛾/𝑓)𝐾𝑙]𝑃 (22) 

 

Integrating equation (16) from 0 to P and 𝑇𝑚 from 𝑇𝑚0 to 𝑇𝑚  in terms of equations (19) and (22), 

 

∫ {𝑉𝑙 − 𝑉𝑠 + [𝑉𝑠𝐾𝑠 − 𝑉𝑙 (
𝛾

𝑓
) 𝐾𝑙] 𝑃} 𝑑𝑃 = (𝐻𝑚0𝑇𝑚0

2)
𝑃

0

∫ 𝑇𝑚 𝑑𝑇𝑚

𝑇𝑚

𝑇𝑚0

    

 

yyields 

 

       𝑇𝑚(𝑃) = 𝑇𝑚𝑜√1 +
{2(𝑉𝑙 − 𝑉𝑠)𝑃 + [𝑉𝑠𝐾𝑠 − 𝑉𝑙(𝛾 ƒ⁄ )𝐾𝑙]𝑃2}

𝐻𝑚𝑜
    (23) 

 

In equation (22), 𝛾 is the surface energy, and 𝑓 is the surface stress. 𝛾 ≠ 𝑓 for solid, and   𝛾 = 𝑓 in 

liquids [24]. The surface stress of liquid and solid is represented by (𝑓𝑠𝑙) for bulk is: 

 

𝑓𝑠𝑙(∞) = (ℎ
2⁄ )[3𝑆𝑣𝑖𝑏(∞)𝐻𝑚𝑜(∞) 𝐾𝑠𝑉𝑠𝑅⁄ ]

1
2⁄  (24) 

 

where ℎ is height of the first solid surface layer, 𝑆𝑣𝑖𝑏 is the vibrational component of melting entropy, 

and R is the ideal gas constant. 

 

For NWs  

 𝑓𝑠𝑙(𝑟) = (ℎ
2⁄ )[3𝑆𝑣𝑖𝑏(𝑟)𝐻𝑚𝑜(𝑟) 𝐾𝑠𝑉𝑠𝑅⁄ ]

1
2⁄  (25) 

 

The rate of surface energy 𝛾𝑠𝑙 for bulk is, 

 

𝛾𝑠𝑙 = 2ℎ𝑆𝑣𝑖𝑏(∞ )𝐻𝑚(∞)/(3𝑉𝑠𝑅) (26) 

 

And for NWs 

𝛾𝑠𝑙 = 2ℎ𝑆𝑣𝑖𝑏(𝑟 )𝐻𝑚(𝑟)/(3𝑉𝑠𝑅) (27) 

 

where 𝑆𝑣𝑖𝑏 is the vibrational part of the overall melting entropy.    

 

For bulk crystal, the mean bond length which is written as  𝑑𝑚𝑒𝑎𝑛(∞) is constant and for nanoscale 

range denoted by 𝑑𝑚𝑒𝑎𝑛(𝑟) its size increases with the decrease of 𝑟, and when the value of 𝑟 

approaches 3ℎ the mean bond length reaches a critical and its maximum value which is denoted by 

𝑑𝑚𝑒𝑎𝑛(𝑟𝑐). The change of mean bond length is as follows; 

 

∆𝑑𝑚𝑒𝑎𝑛(𝑟) = ∆𝑑𝑚𝑒𝑎𝑛(𝑟𝑐) [𝑒𝑥𝑝 (
−2(𝑆𝑚(∞) − 𝑅)

3𝑅 (
𝑟
𝑟𝑐

− 1)
)]

1/2

 (28) 
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𝑅 is the ideal gas constant and (𝑟𝑐  =  [3 − 𝐷]ℎ), where D might be 0, 1, or 2 for quantum dots, NW, 

and nanolayer, respectively, and h and 𝑑𝑚𝑒𝑎𝑛(𝑟) can be obtain from, ℎ = 1.429 𝑑𝑚𝑒𝑎𝑛(∞) [25].  

𝑆𝑚 is the overall melting entropy and is expressed as follows [26]: 
 

𝑆𝑚(∞) = 𝐻𝑚(∞)/𝑇𝑚 (29) 

 
where 𝐻𝑚(∞) is the melting enthalpy, and is found as follows: 
 

𝐻𝑚(∞) = −10−5 𝑇𝑚
2 (∞) + 0.059 𝑇𝑚(∞) − 21.33 (30) 

 
𝐻𝑚(∞) = 26.37 J·mol−1 [25],  𝑇𝑚 is in K, 𝐻𝑚 is in J/ mole. 

 
The bulk melting entropy is given by:        
 

𝑆𝑚(∞) = 𝑆𝑣𝑖𝑏(∞) + 𝑅 (31) 

 
The mean bond length is calculated using the equation below [25]. 
 

 𝑑𝑚𝑒𝑎𝑛(𝑟) = ℎ − ∆𝑑𝑚𝑒𝑎𝑛(𝑟) (32) 

 
and the bulk mean bond length is, 
 

 𝑑𝑚𝑒𝑎𝑛(∞) = ℎ − ∆𝑑𝑚𝑒𝑎𝑛(𝑟𝑐) (33) 

 
The size-dependent lattice constant (a(r)) in nanoscale at free pressure (P = 0) 
 

𝑎(𝑟) =
4

√3
𝑑𝑚𝑒𝑎𝑛(𝑟) (34) 

 
Then the size-dependent lattice volume (V(r)) at free pressure is determined from the following 

equation 
 

𝑉(𝑟) = [
𝑎(𝑟)

2
]

3

 (35) 

 
The mass density 𝜌(𝑟) of nanocrystalline materials is given by [27], 
 

𝜌(𝑟)  = 𝜌(∞) 
𝑉(∞)

𝑉(𝑟)
 (36) 

 

𝜌(∞) is the bulk material's mass density, and 𝑉(∞) is the volume unit cell in the bulk state. The bulk 

density of crystals 𝜌(∞) is given by [28]: 
 

𝜌(∞)  =  
𝑀

𝑁𝐴𝑉(∞)
 (37) 

 
The average molar mass of Bismuth which is used in this equation (M= 41. *10-26kg). At room 

temperature and zero pressure the bulk modulus 𝐵(∞) is related to bulk group velocity 𝑣 𝑔 as follows 

[29]: 
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𝐵(∞) =  𝑣𝑔
2(∞) 𝜌(∞) (38) 

 
To compute the nanoscale bulk modulus we use; 
 

𝐵(𝑟) =  𝑣𝑔
2(𝑟) 𝜌(𝑟) (39) 

 
The group velocity 𝑣𝑔 in equation (39) includes acoustic and optical phonons, and each one of them 

has one longitudinal and two transverse polarisation branches. Thus, the mean group velocity is 

determined as follows, 
 

1

𝑣𝑔
𝑇𝑜𝑡𝑎𝑙 =

1

𝑣𝑔
𝐿

+
2

𝑣𝑔
𝑇
 (40) 

 
The relation between the group velocity and the Debye temperature for isotropic system zero pressure, 

can be expressed as [30]; 
 

𝑉𝑔(𝑟) = 𝑉𝑔(∞)
𝛩𝐷(𝑟)

𝛩𝐷(∞)
 (41) 

 
where 𝜃𝐷(𝑟) is the size-dependent Debye temperature, and 𝜃𝐷(∞) is the bulk Debye temperature. 

The Debye temperature of the nanowire (NW) can be determined as follows.  
 

𝜃𝐷(𝑟) = 𝜃𝐷(𝑟) [
𝑇𝑚(𝑟)

𝑇𝑚(∞)
]

1 2⁄

 (42) 

 
where  𝑇𝑚(∞) 𝑇𝑚(𝑟) denotes to the bulk and nanosized dependent melting temperatures respectively 

at (P = 0).  𝑇𝑚(𝑟) can be determined as follows, 
 

                                    𝑇𝑚(𝑟) = 𝑇𝑚(∞) (
𝑉(𝑟)

𝑉(∞)
)

2 3⁄

𝑒𝑥𝑝 (
−2(𝑆𝑚(∞)−𝑅

3𝑅(
𝑟

𝑟𝑐
)−1

) (43) 

 

The parameters of Bismuth that are utilized to measure the LTCs under pressure in bulk and NW 

have diameters of 50 nm, 63 nm, 66 nm, 100 nm, and 148 nm, as shown in Table 1. 

 

Table 1. Universal constants and some specific parameter for Bismuth 
 

Ideal gas constant R 8.314 (JK−1 mol−1) Ref. [31] 

Avogadro number NA 6.02 × 1023  

Melting temperature Tm 544.5 (K)  

Enthalpy of fusion Hm 53.146 (J.g-1) Ref. [32] 

First surface layer height h 0.4078 (nm)  From Eq. (17) 

Bulk overall melting entropy 𝑆𝑚(∞) 30 (JK−1mol−1) From Eq. (20) 

 Svib 21.686 (JK−1mol−1)  

Mass density ρ 9800 (kg.m-3)  

Elastic constant c11 

c12 

c44 

63.37 (GPa) 

24.49 (GPa) 

11.57 (GPa) 

 

Average atomic mass  208.98038 (amu) Ref. [31] 

Weight factor η 0.55 Ref. [33] 

Effective mass m* 0.113𝑚𝑒 Ref. [31] 
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Eq. (21) is also applicable for nanocrystals if we substitute 𝑇𝑚𝑜 in Eq. (21) by size-dependent melting 

temperature at zero pressure 𝑇𝑚𝑜
′. The quantitative value of 𝑇𝑚𝑜

′ is determined according to 

Lindemann′s criterion for melting as [34]; 

 

               𝑇𝑚𝑜
` = 𝑇𝑚𝑜𝑒𝑥𝑝{[−2𝑆𝑉𝑖𝑏/3𝑅]/[(𝑟 𝑟𝑜⁄ ) − 1]} 

(44) 

 

In Eq. (44) 𝑟0  =  3ℎ where all atoms are located on their surfaces. 

 

           𝑇𝑚(𝑃) = 𝑇𝑚𝑜
` √1 +

{2(𝑉𝑙−𝑉𝑠)𝑃+[𝑉𝑠𝐾𝑠−𝑉𝑙(ɣ ƒ⁄ )𝐾𝑙]𝑃2}

∆𝐻𝑚𝑜
. 

  (45) 

 

 

Figure 2  shows the relation of the melting temperature of Bismuth nanocrystal with its size and 

pressure, and as a result, it is found that the melting temperature of Bismuth nanowires is lower than 

the melting temperature of bulk. In Eq. (43), Vs represents the molar volume of the crystal, which is 

defined by [34]; 

 

                                    𝑉𝑠(𝑟) =  𝑉𝑙(𝑟)N𝐴, (46) 

 

                                   
𝑉𝑙

𝑉𝑠
= 0.9. (47) 

 

The compressibility values 𝐾𝑠(𝑟) can be determined by: 

 

                              𝐾𝑙/𝐾𝑠 = 10. (49) 

 

The calculations in the present study were achieved by using the Morelli Callaway model and the 

Clapeyron equation at pressures ranging from 0 to 1.8 GPa. A list of additional calculated parameters 

for the Bismuth NWs is presented in Table 2. 

 

Table 2. The estimated size dependence parameters for Bi NWs and bulk 

 

r (nm) 98 115 327 Bulk 

dmean (Å) 2.8626 2.8613 2.8564 2.8537 

a (Å) 6.6110 6.6079 6.5965 6.5904 

V (Å3) 36.1171 36.0671 35.8814 35.7813 

ρ(kg.m-3) 9708 9722 9772 9800 

Tm (K) 539.96 540.63 543.14 544.5 

𝜃𝐷
𝐿  (K) 121.17 121.43 122.42 122.96 

𝜃𝐷
𝑇1 (K) 62.54 62.62 62.91 63.06 

𝜃𝐷
𝑇2 (K) 48.28 48.34 48.57 48.68 

vL (m.s-1) 2345 2350 2369 2380 

vT1 (m.s-1) 1397 1398 1405 1408 

vT2 (m.s-1) 1077 1079 1084 1087 

 

Table 3 shows some of the relevant data that used to calculate LTC for Bi nanowires and bulk. 
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Table 3. The fitting parameters of Bi NWs used in this work for calculating LTC for each diameter 

r (nm) 

 
r (nm) 

98 115 327 Bulk 

Nimp (m
-3) 9.0 × 1025 8.0 × 1025 3.0 × 1025 5.0 × 1021 

ND (m-2) 6 × 1016 5 × 1016 1 × 1016 9 × 1011 
ne (m

-3) 2.5 × 1025 2 × 1025 1.18 × 1025 3 × 1018 
ε 0.002 0.001 0.0007  

Lc (nm) 98 115 327  

L (μm) 5 5 5 300 

γL 0.012 0.011 0.009 6 

γT 0.011 0.010 0.008 0.7 

 

3. Results and Discussion 

 

In this study, the thermal conductivity of Bismuth NW and bulk was calculated as a function of 

temperature at different pressures ranging from 0 to 1.6 GPa, as shown in Fig. 1.  

 

  

  
Figure 1. Lattice thermal conductivity of Bi for (a) bulk and (b-d) nanowires as a function of temperature 

and hydrostatic pressure 

 

Figure 1(a) represents the temperature dependence of LTC for the Bismuth bulk, where the black 

solid square curve represents the experimental data and the theoretical LTC fits with the experimental 

data at P=0 Pa. From the graph thermal conductivity is very low at 𝑇 = 0 (𝐾)  then as the temperature 
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increases, so the more vibrations resulting in increasing phonon propagation and higher thermal 

conductivity, which have maximum value at 𝑇 = 5 𝐾.  Thus, at low temperature both boundary and 

phonon-electron scattering have significant effects on LTC. Then the curve declines and approach a 

very low value at 𝑇 > 100 (𝐾). Additionally, the LTC peak shifts to higher temperature by increasing 

the hydrostatic pressure. Pressure can directly decrease interatomic distance and hence the scattering 

increases. The other colored lines represent the effect of pressure on the sample which clearly seen 

that as the pressure increases the thermal conductivity decreases. Figures 1 b-d show the influence of 

thickness on the conductivity of Bismuth NW with diameter 98, 115 and 327 nm in the temperature 

range 10 ‒ 300 K and pressure range 0 ‒ 1.6 GPa. In the mentioned graphs the thermal conductivity 

of Bismuth nanowires increase as the temperature increases however the real temperature-dependent 

behaviors are different with different diameter at the same pressure. As the diameter decreased the 

lattice thermal conductivity of Bismuth is decreased, because thermal conductivity depends on many 

factures, includes the structure of the atomic arrangement. It is known that the periodicity of atoms 

in the core of nanowire is similar to its bulk material, however from the center to the surface, the 

interatomic distances increases [35]. It is clearly seen that when going from bulk to nanowire, the 

bulk thermal conductivity at low temperature is higher than that of nanowire thermal conductivity 

due to alternate contributions to phonon scattering.   

 

3.1. Melting temperature of Bismuth in Bulk and NW Forms 

 

Figure 2 reveals the melting temperature of Bismuth nanowire as a function of pressure, and 

thickness. In the graph the relationship of melting temperature with diameter is constant at low 

pressure, but as the pressure increases and reaches 1.5 GPa melting temperature shows a sharp decline 

and reaches a very low value. Yang and colleague [36] showed that melting temperature decreases 

with increasing pressure. They predicted melting temperature as a function of pressure using 

Clapeyron equation. Their result confirms the experimental data obtained for Ge bulk. However, in 

the nanoscale dimension, size dependent parameters also affect melting temperature. 

 

 
 

Fig. 2. A 3D plot of melting temperature vs. diameter and pressure 
 

In solid state physics, when pressure is applied on a solid, the lattice thermal conductivity decreases, and heat 

movement is controlled by phonons, these phonons behave as heat carriers.  

 

3.2. Pressure-dependent Lattice thermal conductivity - of Bismuth 

 

Figure 3a depicts the Lattice thermal conductivity LTC of Bismuth as a function of pressure ranging 
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from 0 to 1.8 GPa for bulk at different diameters of (98, 115, 327 nm) nanowires at a temperature of 

300 K. The graph shows that lattice thermal conductivity decreases as the pressure increases, and 

that’s occurring more clearly with the bulk. Figure 3b shows the lattice thermal conductivity of bulk 

Bismuth at different temperatures, the thermal conductivity of the Bismuth was estimated 

theoretically. The minimum value of LTC (P) for bulk Bi is recorded at 300 K and 1.8 GPa which is 

0.2 (W/m-1 K-1), and the maximum value obtained at pressure-free LTC is 3 W/m-1 K-1.  
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Figure 3. LTC as a function of hydrostatic pressure at (a) room temperature (300 K), (b) temperature from 3 

to 300 K 

 

3.3. Density and Bulk Modulus of Bismuth 

 

Figure 4(a) shows the relationship between calculated atomic bond density and diameter, while Fig. 

4(b) shows relationship between bulk modulus and diameter. The spacing between Bismuth atoms is 

the shortest at the lowest density. When the atoms' sizes shrank their density will increase, and hence 

their diameters will decrease as well, which will affect physical and chemical properties [27].  

 

  
 

Figure 4. (a) Mass density and (b) bulk modulus for nano and bulk Bi 

 

3.4. Compressibility, Solid Molar Volume, and Liquid Molar Volume of Bismuth 
  

In this section, the compressibility, solid molar volume, and liquid molar volume for both Bismuth NWs and 

bulk have all been determined. The relationship between diameter and compressibility with diameters of 98, 

115, and 327 nm is shown in Fig. 5(a), where the compressibility decreases as the diameters increased.  
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Figure 6(a) and (b) shows the change of molar volume for solids and liquids as diameters increase. It 

is clearly seen from the graph that molar volume for both solids and liquids decrease as the diameter 

increases.  

 

 
Figure 5.  Compressibility for both Ks and Kl for nano and bulk Bi 

 

  
  

Figure 6. Solid and liquid molar volumes for Bi nano and bulk 

 

4. Conclusions 

 

By using Debye-Callaway model, LTC for Bismuth bulk and nanowires with diameter 98, 115 and 

327 nm under pressure range 0 ‒ 1.6 GPa was studied. For the Bismuth bulk the experimental data, 

and the theoretical calculated data where no pressure exerted fits well. Lattice thermal conductivity 

decreases as the pressure increases, and that’s occur more clearly with bulk The thermal conductivity 

of Bismuth nanowires increase as the temperature increases however the real temperature-dependent 

behaviors are different with different diameter at the same pressure. The bulk thermal conductivity at 

low temperature is higher than that of nanowire thermal conductivity due to alternate contributions 

to phonon scattering. On the other hand, the relation of the diameter of Bismuth NW with melting 

temperature is constant at low pressure, but as the pressure increases and reaches 1.5 GPa melting 

temperature shows sharp decline and reaches a very low value.  
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