PAPER DETAILS

TITLE: KHALIFA UNIVERSITY OF SCIENCE, TECHNOLOGY AND RESEARCH (KUSTAR) STUDENTS' ATTITUDES TOWARDS MATHEMATICS IN THE LIGHT OF VARIABLES SUCH AS GENDER, NATIONALITY, MATHEMATICS SCORES AND THE COURSE THEY ARE ATTENDING AUTHORS: Yousef Abosalem PAGES: 446-460

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/333267

The Eurasia Proceedings of Educational & Social Sciences (EPESS), 2014

Volume 1, Pages 446-460

ICEMST 2014: International Conference on Education in Mathematics, Science & Technology

KHALİFA UNİVERSİTY OF SCİENCE, TECHNOLOGY AND RESEARCH (KUSTAR) STUDENTS' ATTİTUDES TOWARDS MATHEMATİCS İN THE LİGHT OF VARİABLES SUCH AS GENDER, NATİONALİTY, MATHEMATİCS SCORES AND THE COURSE THEY ARE ATTENDİNG

Yousef ABOSALEM Khalifa University

ABSTRACT: This study was aimed at identifying the attitudes of the students of Khalifa University towards mathematics .The sample of this study consisted of 88(out of 216) students distributed evenly according to gender. 56.9% of the sample were Emiraties and 53.1% were expatriates. The Attitude Towards Mathematics Inventory (ATMI) was implemented in collecting the data.

The results of this study indicated that there were slight statistically significant differences between students' attitudes towards mathematics and mathematics achievement scores, age, the course they are attending, students' high school type, gender and their academic level. Additionally, the results indicated that there were statistically significant differences between self-confidence, enjoyment and value with and students' nationalities. Expatriates students showed higher positive attitudes towards mathematics than the Emirati students. Also, the results showed that there was a slight statistical relationship between enjoyment and students' academic level. Finally, this study revealed that 62.67% of the sample have self-confidence in dealing with mathematics, 84.4% felt that mathematics has a great value to them, and 75.49% showed enjoyment in dealing with mathematics.

Keywords: Attitudes, mathematics, gender, nationality, course attending

INTRODUCTION

Researches on students' attitudes toward mathematics have acquired increasing attention. Many studies outlined that mathematics learning is influenced by several factors; such as motivation, curriculum, teacher and his way of teaching and educational teaching aids he used (Cote & Levine, 2000; Singh et al., 2002; Olatunde, 2009; Howie, 2005; Singh, et al., 2002). Hill (2004) indicated that integrating mathematics and science curriculum does improve students' attitude toward mathematics. Yet, regardless of the amount of effort spend in the improvement and development of mathematics learning process, efforts will have a slight impact in achievement unless there is a positive attitude towards mathematics. (Ma & Kishor, 1997; Ma, & Xu, 2004). However, many factors have influences on students' attitudes toward mathematics. Teachers, parents, and peers, as well as the school environment, all have influences on an individual's attitude. Wilkins and MA (2003) showed that teachers', peers', and parents' positive support will help in creating positive attitude and beliefs about mathematics and thus help restrain negative attitudes and beliefs. Whereas Ames (1992) considered student's home environment and access to instructional materials can all have an impact on his attitude and achievement.

Purpose of the Study

The general purpose of this study was to find out the attitudes of the students of Khalifa University of Science Research and Technology (KUSTAR) towards mathematics. The study is focused on the relationship of their attitudes towards mathematics with other factors such as; gender, mathematics scores, high school type, nationality, academic level, age and the mathematics course they are attending.

Research Questions

⁻ This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 4.0 Unported License, permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

⁻ Selection and peer-review under responsibility of the Organizing Committee of the conference

^{*}Corresponding author: Yousef ABOSALEM - e-mail: Yousef.abosalem@kustar.ac.ae

This study aimed to answer the following questions:

- 1. What is the prelateship between students' attitudes towards mathematics and academic achievement?
- 2. What is the relationship between students' attitudes towards mathematics and gender?
- 3. What is the relationship between students' attitudes towards mathematics and nationalities?
- 4. What is the relationship between attitudes towards mathematics and academic level (foundation or freshmen year)?
- 5. What is the relationship between attitudes towards mathematics and age?
- 6. What is the relationship between attitudes towards mathematics and mathematics courses they are attending?
- 7. What is the relationship between attitudes towards mathematics and high school type?

Definition of Terms

The following definitions are provided for terms having special applications to this study.

- 1. Attitude "refers to someone's basic liking or disliking of familiar target" (Hannula, 2002; p.25)
- 2. High School Type: The high school type refers to either private or government school.
- 3. Academic Level: The academic level refers to whether the student is in foundation or freshman year.
- 4. Nationality: The nationality refers to whether the student is an Emirati or an Expatriate.

Literature review

Many studies have studied the students' attitudes towards mathematics and the impact of that on their achievement. Gottfried (1985) reported in his study that students who value and enjoy mathematics have a higher level of achievement. As well as, Ma and Xu (2004) showed in their study that poor achievement has been linked to a decline in mathematics attitude. Therefore, achievement in mathematics caused a positive attitude. However, a positive attitude towards mathematics does not lead to a good achievement. Other factors might affect students' achievement in mathematics such as textbooks, and teacher quality (Howie, 2005). Yet, both Tapia and Marsh II (2004) argue that students who do well in mathematics showed positive attitudes, consequently they are likely to take more mathematics courses. So, attitude and achievement affect each other in a cyclical manner (Schiefele & Csikszentmihalyi, 2004). Whereas, Ma and Kishor (1997) concluded that the relationship between attitudes towards mathematics and mathematics achievement is not a strong enough. Therfore, Phonguttha, et al. (2009) agreed with Ma and Kishor that mathematics achievement and attitude towards mathematics are not correlated. Furthermore, Casey et al. (1997) and Ma (1999) showed that the relationship between attitude and mathematics achievement exists only with respect to specific or particular mathematics content areas. Maple and Stage (1991) indicated that students' attitude towards mathematics could be used as a predictor of selecting a mathematics major but not for achievement. Along with that, Oakes (1990) argued that students with lower levels of achievement in mathematics confine students' career alternatives involving mathematical skills.

We do know that students' attitudes towards mathematics change overtime because it could be replaced by other activities. Students in the early stages of schooling are given the mathematical concepts slowly and repeatedly by using different teaching aids, resulting in positive attitudes and high achievement for the majority of students. As the mathematical subjects gets more abstract and more diverse, students' attitudes and achievement started to decline or decrease (Ma & Kishor, 1997; Hannula, 2002; Sanchez et al., 2004). The decline in students' attitude towards mathematics could be justified by the huge number of alternatives available for today's students.

Other studies outlined that students' achievement in mathematics is influenced by a variety of factors other than students' attitudes towards mathematics, such as gender, teacher's experience, parents, socioeconomic status, ethnicity, cultural background, grade level and peers (Casey et al, 1997; Ho, et al., 2000; Ma & Kishor, 1997; Ma, 1999, 1997; Carrier, 2008; Isiksal, 2008). Moreover, other researchers outlined that students' attitudes towards mathematics can be affected by teacher attitudes and beliefs (Uusimaki & Nason, 2004; Beswick, 2006; Wilkins & Brand, 2004; Swan, Bell, et al., 2000; Schoenfeld, 1985; Beswick, 2007). Along with that, teaching techniques were considered by many researchers as other factors that could affect students' attitudes toward mathematics (Anderson, 2005; Townsend et. al., 1998; Higgins, 1997; Pearce et. al., 1999; Mitchell, 1999; Kinney, 2001; Yusof & Tall, 1998; Elliott et. al., 2001; Raymond & Leinenbach, 2000; Whitin, 2007).

Furthermore, Tymms (2001) stated that the most important factors affecting students' attitudes towards mathematics were the teacher and student academic level; while gender, age and language were weakly related

with students' attitudes. Koller, et al. (2001) researched gender differences in mathematics achievement, which showed that male achievement is higher than that of female one especially in advanced mathematics courses. However, other researchers (Tapia & Molavan (2007; Tapia & Marsh II, 2004; Isiksal & Cakiroglo, 2008) showed that gender had no effect on students' attitudes towards mathematics and male and female students had the same average mathematics score. Vaughan (2002) introduces another factor that has a direct impact on students' attitudes towards mathematics learning in our schools will increase the interaction between students and consequently produce positive attitudes towards mathematics and academic achievement.

METHODS

This study was aimed at identifying the attitudes of the students of Khalifa University of Science, Technology and Research (KUSTAR) towards mathematics in the light of variables such as gender, nationality, mathematics scores and the course they are attending

Data Collection Instrument

In this study the Attitudes Towards Mathematics Inventory (ATMI) (Appendix A) was used to collect data about students' attitudes towards mathematics. ATMI consists of 40-items, 5-points Likert scale ranging from strongly disagree to strongly agree distributed by using exploratory factor analysis into four areas or domains related to attitudes towards mathematics including self-confidence (15 items), value(10 items), enjoyment(10 items), and motivation(5 items) as shown in table-1. The instrument has a reliability coefficient alpha of 0.97 with standard error of measurement of 5.67 (Tapia, 1996). It also demonstrates content and constructs validities.

Domain	Items	Total
Self-confidence	9,10,11,12,13,14,15,16,17,18,19,20,21,22,40	15
Value	1,2,4,5,6,7,8,35,36,39	10
Enjoyment	3,24,25,26,27,29,30,31,37,38	10
Motivation	23,28,32,33,34	5
Total		40

Table 1. The distribution of the ATMI scale according to the four domains

Sample

The sample of this study consisted of 88 out of 216 undergraduate students at Khalifa University randomly selected from all students enrolled in the pre-calculus, calculus-I, and calculus-II courses whose ages ranged from 18 to 22 years old and agreed to participate in this research. As shown in table 2, forty-four students of the sample were male and the same number was female. 58(66%) students were Emiratis and 30 (34%) students were expatriates.

 Table 2. The sample distribution according to gender, age, and nationality

Gender	Nationality		1	Age(years)		
		18	19	20	21	22	Total
	UAE	1	19	12	1	0	33
Male	Others	3	6	1	0	1	11
	Total	4	25	13	1	1	44
	UAE	4	14	7	0		25
Female	Others	2	11	4	2		19
	Total	6	25	11	2		44
-	Fotal	10	50	24	4		88

Table 3 and figure 1 show the sample distribution according to the mathematics courses they are attending and the type of the school they obtained their high school diploma from. 67 of them obtained their high school diploma from government school and 21 were from private ones. Whereas, 24 students are in Pre-calculus, 27 students are in Calculus I and 37 students are in Calculus II.

 Table 3. The sample distribution according to High school type, and

 Course are attending

Course are attenuing									
High School Type	Course								
	Pre-Calculus	Calculus-I	Calculus-II						
Government	19	18	30	67					
Private	5	9	7	21					
Total	24	27	37	88					

Figure 1. The sample distribution according to high school type and Course are attending

RESULTS and FINDINGS

Research Question 1

What is the prelateship between students' attitude towards mathematics and academic achievement?

In order to the answer the first research question, and by assuming that the data is normally distributed according to Kolomogrov and Shapirotests tests with p > 0.05, Pearson correlations were calculated. The results shown in table 4 outlined that there is a slight significant relationship between students' attitudes towards mathematics and mathematics achievement scores. However, this relation can explain 9.24% of the variance, 90.76 % unjustified or unexplained.

Table 4. Pearson	correlations	between	students'	attitudes and	
	academic	achieven	nent		

		Attitude	Math Grade
Attitude	Pearson Correlation	1	0.304^{*}
	Sig. (2-tailed)		0.017
	Ν	76	61
Math Grade	Pearson Correlation	.304*	1
	Sig. (2-tailed)	0.017	
	Ν	61	69

*. Correlation is significant at the 0.05 level (2-tailed).

Research Question 2

What is the relationship between students' attitude towards mathematics and gender?

In order to find out if there is statistically significant differences between students' attitudes towards mathematics and gender. By assuming the homogeneity of the two variances according to Levene's test with p > 0.05 as shown in table 5, and according to Kolmogorov-Smirnov and Shapiro-Wilk normality tests, we can assume that the data achieved the normality condition with p > 0.05 as shown in table 6. As shown in table 7 the means and standard deviations for the two groups are: 140.67, 140.70, 9.78, and 9.16 respectively. Four separate analyses of variances (ANOVA) were conducted as shown in table 8. The results indicated that no statistically significant differences between the four domains and gender with p > 0.05.

Table 5. The levene's test of variances homogeneity						
Levene's Test for Equality of Variances						
		F	Sig.			
	Equal variances		-			
Attitude	assumed	0.032	0.859			

Table 6. The normality test								
Kolmogorov-Smirnov				Shapiro-Wilk				
Attitude	Statistic 0.086	df 76	Sig. .200*	Statistic 0.971	df 76	Sig. 0.076		

Table 7. The descriptive statistics according to the gender								
Attitude -	Gender	Ν	Mean	Std. Deviation	Std. Error Mean			
	Male	39	140.67	9.78	1.56563			
	Female	37	140.7	9.16	1.50667			
	Female	37	140.7	9.16	1.50667			

Table 7. The descriptive statistics according to the gender

Table 8. The four analysis of variances(ANOVA) according to the gender

Domain		Sum of Squares	df	Mean Square	F	Sig.
Self	Between Groups	20.555	1	20.555	.867	0.5.5
Confidence	Within Groups	1848.195	78	23.695		.355
	Total	1868.750	79			
Value	Between Groups	.705	1	.705	.030	0.62
	Within Groups	1933.601	83	23.296		.862
	Total	1934.306	84			
	Between Groups	2.012	1	2.012	.076	704
Enjoyment	Within Groups	2174.690	82	26.521		./84
	Total	2176.702	83			
Motivation	Between Groups	.440	1	.440	.079	770
	Within Groups	460.383	83	5.547		.779
	Total	460.824	84			

Research Question 3

What is the relationship between students' attitudes towards mathematics and nationalities?

In order to find out if there is a statistically significant difference between students' attitudes toward mathematics and nationalities, the homogeneity of the two variances was assumed according to Levene's test with p > 0.05as shown in table 9 and descriptive statistics shown in table-10. As shown previously in table-6, it can be assumed that the data is normally distributed. Four separate analyses of variances (ANOVA) were conducted as shown in table 11. The results indicated that there were statistically significant differences between selfconfidence F(1, 78) = 9.699 and p = 0.03, enjoyment F(1, 82) = 15.285 and p = 0.001, and value F(1, 83) =6.419 and p = 0.013, and students' nationalities at $\alpha = 0.05$. However, the results showed that there is no statistically significant difference between motivation F(1,83) = 1.148 and p = 0.228, and nationality at $\alpha = 0.05$. No Post Hoc comparisons were conducted because the number of values in each domain is less than three values. However, according to the descriptive statistics mentioned in table 10, we can conclude that the other nationalities with a mean value of 142.79 have higher positive attitudes towards mathematics than UAE students with a mean of 139.46.

Table 9. The levene's test of variances homogeneity									
Levene's Test for Equality of Variances									
				F	Sig.				
	E	qual var	iances						
-	Attitude	assum	ned	0.393	0.532				
	Table 10. The descriptive statistics according to the nationalities								
	Nationality	N	Min.	Max.	Mean	Std. Deviation			
UAE	Attitude	48							
UAL	Valid N (leastwise)	48	108	160	139.4583	9.25745			
Others	Attitude	28	117	158	142.7857	9.49213			
Others	Valid N (leastwise)	28							

Table 11. The Four Analyses Of Variances (ANOVA) According To Th	ıe
Nationalities	

	Domain	Sum of Squares	df	Mean Square	F	Sig.
	Between	206.67	1	206.67	9 699	
Self_	Within	200.07	1	200.07).0//	
Confidence	Groups	1662.08	78	21.309		
	Total	1868.75	79			0.003
	Between					
	Groups	138.85	1	138.85	6.419	
Value	Within					
	Groups	1795.456	83	21.632		
	Total	1934.306	84			0.013
	Between					
	Groups	342.002	1	342.002	15.285	
Enjoyment	Within					
	Groups	1834.7	82	22.374		
	Total	2176.702	83			0
	Between					
Motivation	Groups	8.063	1	8.063	1.478	
Wouvation	Within					
	Groups	452.76	83	5.455		0.228
		451				

Total 460.824 84

Research Question 4

What is the relationship between attitudes towards mathematics and academic level (foundation or freshmen year)?

In order to find out if there is statistically significant differences between students' attitudes towards mathematics and their academic level. The homogeneity of the two variances and the data that was normally distributed were assumed according to Levene's test with p > 0.05 as shown in table 12. Based on the descriptive statistics shown in table 13 and according to Kolmogorov-Smirnov and Shapiro-Wilk normality tests, four separate analyses of variances (ANOVA) were conducted as shown in table 14. The results indicated that there were no statistically significant differences between students' attitudes towards mathematics and students' academic year at $\alpha = 0.05$. However, the analysis showed that there is a slight statistically significant difference between enjoyment and student's academic level F(1, 82) = 4.198 with p = 0.044 favor to freshman students ($\overline{x} = 140.88$).

Table 12. The Levene's Test Of Variances Homogeneity					
	Levene's Test for Equality of Variances				
		F	Sig.		
Attitude	Equal variances assumed	1.038	0.312		

Table 13. The Descriptive Statistics According To Attitude And Academic

		Lev	el		
	Academic Level	Ν	Mean	Std. Deviation	Std. Error Mean
Attitude	Foundation	18	140.0556	7.97402	1.87949
	Freshman	58	140.8793	9.88189	1.29756

Table14. The Four Analysis Of Variances(ANOVA) According To The Academic Level And Attitude

	Domain		đf	Mean	Б	Sig
	Domani	Squares	ui	Square	Г	Sig.
Self_	Between Groups	88.817	1	88.817	3.89	
Confidenc	Within Groups	1779.933	78	22.82	2	0.052
e	Total	1868.75	79			
	Between Groups	9.287	1	9.287	0.4	
Value	Within Groups	1925.019	83	23.193	0.4	0.529
	Total	1934.306	84			
	Between Groups	106.002	1	106.002	4.19	
Enjoyment	Within Groups	2070.7	82	25.252	8	0.044
	Total	2176.702	83			
Motivatio	Detwoon Crowns	1 22	1	1 22	0.22	
n	Between Groups	1.52	1	1.52	0.23	0.627
	Within Groups	459.504	83	5.536	0	
	Total	460.824	84			

Research Question 5

What is the relationship between students' attitudes towards mathematics and age?

In order to answer the fifth research question, and by assuming that the data is normally distributed according to Kolomogrov and Shapirotests with p > 0.05, Pearson correlations were calculated. The results as shown in table 15 outlined that there is no meaningful relationship between students' attitudes towards mathematics and age at $\alpha = 0.05$. However, only this relationship can explain 4.7% of the variance, 95.3 % unjustified or unexplained.

Table 15. The Co	orrelations	Between	Students'	Attitude	Towards
	Mathe	matics A	nd Age		

		Attitude	Age
	Pearson Correlation	1	-0.217
Attitude	Sig. (2-tailed)		0.06
	Ν	76	76
	Pearson Correlation	-0.217	1
Age	Sig. (2-tailed)	0.06	
	Ν	76	88

Research Question 6

What is the relationship between attitudes towards mathematics and mathematics course they are attending?

In order to find out if there is a statistically significant difference between students' attitudes towards mathematics and the course they are attending. The homogeneity of the variances according to Levene's test with p > 0.05 as shown in table 16, the data is normally distributed according to Kolomogrov and Shapiro tests with p > 0.05 were assumed. Four separate analyses of variances (ANOVA) were conducted as shown in table 18. The results indicated that there were no statistically significant difference between students' attitudes towards mathematics and the course they are attending at $\alpha = 0.05$.

 Table 16. The Levene's Test Of Variances Homogeneity

	Levene's Test for Equality of Variances					
		F	Sig.			
Attitude	Equal variances assumed	0.001	0.979			

Table 17. The Four Analyses Of	Variances (ANOVA)	According To	o The Math.	Courses
	They Are Attending	ş		

Domain		Sum of Squares	df	Mean Square	F	Sig.
Salf	Between Groups	101.007	2	50.504	2.2	
Confidence	Within Groups	1767.743	77	22.958	2.2	0.118
	Total	1868.75	79			
	Between Groups	69.607	2	34.803	1 52	0 222
value	Within Groups	1864.699	82	22.74	1.55	0.225
	Total	1934.306	84			
Enjoyment	Between Groups	140.077	2	70.038	2 786	
	Within Groups	2036.626	81	25.144	2.760	0.068
	Total	2176.702	83			
Motivation	Between	7.588	2	3.794	0.686	0.506

Groups			
Within Groups	453.236	82	5.527
Total	460.824	84	

Research Question 7

What is the relationship between attitude towards mathematics and high school type?

In order to find out if there is a statistically significant difference between students' attitudes towards mathematics and high school type. By assuming that the homogeneity of the two variances according to Levene's test as shown in table 18, and the data is normally distributed according to Kolomogrov and Shapiro tests with p > 0.05. Four separate analyses of variances (ANOVA) were conducted as shown in table 19. The results indicated that there were no statistically significant differences between students' attitudes and students' high school type.

	Table 18. The Levene's Test Of Variances Homogeneity					
	Levene's Test for Equality of Variances					
_			F	Sig.		
_	Attitude	qual variances assumed	0.001	0.979		
Table 19. Th	ne Four Analyses	Of Variances (AN	(OVA) Acco	ording To The H	ligh Schoo	ol Type
De	omain	Sum of Squares	df	Mean Square	F	Sig.
Self	Between Groups	28.017	1	28.017		250
Confidence	Within Groups	1840.733	78	23.599	1.187	.279
	Total	1868.750	79			
T 7 1	Between Groups	.090	1	.090	004	0.50
Value	Within Groups	1934.215	83	23.304	.004	.950
	Total	1934.306	84			
Enjoyment	Between Groups	32.861	1	32.861	1 057	244
	Within Groups	2143.841	82	26.144	1.257	.266
	Total	2176.702	83			
Motivation	Between Groups	1.239	1	1.239	.224	.637

DATA ANALYSIS OF THE FOUR DOMAINS

Self-Confidence Domain

Table 20 showed that 62.67% of the sample reveals that KUSTAR students felt self-confidence in their ability to do mathematics, whereas, 13.67% of them showed low self-confidence in their ability to do mathematics.

Table 20. The Percentages And Frequencies Of Students' Responses On The Self-Confidence Domain

Item	Strongly Disagree	Disagree	Neutral	Agree	Strongly Agree
Item	11	15	20	20	16

9*					
Item 10*	3	7	17	33	28
Item 11*	3	6	19	40	20
Item 12*	3	5	17	38	25
Item 13*	3	10	19	31	22
Item 14*	1	10	12	37	27
Item 15*	1	15	13	35	23
Item 16	1	14	18	32	21
Item 17	4	6	26	31	19
Item 18	2	13	31	33	8
Item 19	2	6	20	39	20
Item 20*	6	6	22	38	15
Item 21*	2	13	23	33	17
Item 22	1	5	27	39	16
Item 40	0	4	24	39	21
Total Percent	43 3.30%	135 10.37%	308 23.66%	518 39.78%	298 22.89%

Value Domain

Table 21 showed that 84.40% of the sample reveals that KUSTAR student felt that mathematics has a great value to them. Whereas, 4.29% of them indicated that mathematics has no value for them.

	Strongly				Strongly
Item	Disagree	Disagree	Neutral	Agree	Agree
Item 1	4	1	1	17	63
Item 2	3	0	3	9	70
Item 3	0	3	17	35	30
Item 4	1	1	5	30	49
Item 5	1	1	16	38	32
Item 6	0	2	7	36	43
Item 7	0	6	7	38	37
Item 8	2	8	30	35	12
Item	_				
35	0	4	9	46	28
Item	0	2	<i>.</i>	41	20
36	0	2	6	41	38
Item	0	2	-	27	10
39	0	2		37	42
Total	11	30	108	362	444

Table 21. The percentages and frequencies of students' responses on the Value domain

455

Percent	1.15%	3.14%	11.31%	37.91%	46.49%	
* Indicated	d Reversed Iter	ms				

Motivation Domain

Table 22 showed that 67.13% of the sample reveals that KUSTAR students are highly motivated to learn mathematics, whereas, 10.35% of them lack motivation.

Table 22. The percentages and frequencies of students' responses on the Motivation domain

	Strongly				Strongly
Item	Disagree	Disagree	Neutral	Agree	Agree
Item 23 Item	0	6	15	45	22
28*	3	7	7	38	33
Item 32	3	12	28	30	14
Item 33	1	7	24	37	18
Item 34	0	6	24	36	19
Total	7	38	98	186	106
Percent	1.61%	8.74%	22.53%	42.76%	24.37%

* Indicated Reversed Items

Enjoyment Domain

Table 23 showed that 75.49% of the sample reveals that KUSTAR students showed enjoyment in doing mathematics. Whereas, 7.90% of them indicated that mathematics is not an interesting subject.

	Strongly				
Item	Disagree	Disagree	Neutral	Agree	Strongly Agree
Item 3	0	3	17	35	30
Item 24	3	5	10	38	32
Item 25*	4	5	5	38	36
Item 26	2	5	15	44	21
Item 27	8	4	10	20	46
Item 29	2	1	10	38	36
Item 30	2	11	21	36	17
Item 31	0	4	12	40	31
Item 37	2	3	25	41	17
Item 38	1	4	20	39	24
Total	24	45	145	369	290
Percent	2.75%	5.15%	16.61%	42.27%	33.22%

Table 23. The percentages and frequencies of students' responses on the Enjoyment domain

* Indicated Reversed Items

DISCUSSION and CONCLUSIONS

A common understanding around the world that is students of different ages and of different studying levels are facing difficulties when they attempting to do mathematics. Many researches indicated that these difficulties might due to mathematics teachers, curricula, assessment methods or/and teaching strategies used in schools and universities.

Many researches studied the effect of students' attitudes towards mathematics (see e.g. Tapia, 1996, 2004; Tapia& Molavan, 2007) on academic achievement. Some studies outlined that there is no impact of the students' attitudes towards mathematics on their academic achievement (see e.g. Ma and Kishor, 1997; Phonguttha, et al., 2009). Other studies showed that there is a relationship between attitudes towards mathematics and achievement (see e.g. Gottfried 1985; Ma and Xu, 2004; Popham, 2005; Koller, et al. (2001).

This study aimed at identifying the attitudes of Khalifa University of Science, Technology and Research (KUSTAR) students towards mathematics in the light of some variables such as gender, nationality, mathematics scores and the course they are attending. The results of this study showed that there were no statistically differences between students' attitudes towards mathematics according to gender, academic level, high school type and nationality. The results of this study agreed with other studies (see e.g. Casey et al, 2001; Ho, et al., 2000; Ma & Kishor, 1997; Ma, 1999, 1997; Tapia & Molavan, 2007; Tapia & Marsh II ,2004) in that there were no statistical differences between students' attitudes towards mathematics and other factors such as : gender, ethnicity, mathematics scores. In addition, this study outlined that 62.67% of KUSTAR students felt self-confidence in their ability to do mathematics, 84.40% of them felt that mathematics has a great value to them, 67.13% of them are highly motivated to learn mathematics, and 75.49% of the sample reveals that KUSTAR students showed enjoyment in doing mathematics.

Many factors have influences on students' attitudes towards mathematics. Teachers, parents, teaching strategies, assessment methods, and peers, as well as the school environment all have influences on an individual's attitude. I do agree with Tymms (2001) in that the most important factors affecting students' attitudes towards mathematics were the teacher and student academic level, so that more studies have to be conducted in the future to clarify the relationship between teachers' and teaching characteristics on students' attitudes towards mathematics. As well as, to determine how teachers can modify or change their students' attitudes towards mathematics if that is possible, and what the effect of using collaborative learning in schools and universities on changing students' attitudes towards mathematics is. Personally, I think class size, teaching methods and assessment techniques used in our schools and universities might have an impact on the students' attitudes towards towards mathematics and consequently on their achievements.

REFERENCES

- Anderson, J. (2005). The relationship between student perceptions of team dynamics and simulation game outcomes: an individual-level analysis. *Journal of Education for Business* 81(2), 85-90.
- Beswick, K. (2007). Teachers' beliefs that matter in secondary mathematics classrooms.
- Educational Studies in Mathematics, 65(1), 95-120.
- Beswick, K. (2006). Changes in pre-service teachers' attitudes and beliefs: the net impact of two mathematics education units and intervening experiences. *SchoolScience and Mathematics*, 106(1), 36-47.
- Carrier, S. J. (2007). Gender differences in attitudes toward environmental science. *School Science and Mathematics*, 107(7), 271-278.
- Casey, M.B., Nuttall, R.L., & Pezaris, E. (1997). Mediators of gender differences in mathematics college entrance test scores: A comparison of spatial skills with internalized beliefs and anxieties. *Developmental Psychology*, 33(4), 669-680.
- Cote, J.E. & Levine, C. G. (2002). Attitude versus aptitude: Is intelligence or motivation more important for positive higher-educational outcomes? *Journal of Adolescent Research*, 15(1), 58-80.
- Elliott, B., Oty, K., McArthur, J., & Clark, B. (2001). The effect of an interdisciplinary algebra/science course on students' problem solving skills, critical thinking skills and attitudes toward mathematics. *International Journal of Mathematical Education in Science & Technology*, 32(6), 811-816.
- Gottfried, A. E. (1985) Academic intrinsic motivation in elementary and junior high school students. *Journal of Educational Psychology*, 77(6), 631-645.
- Hannula, M. (2002). Attitude towards mathematics: Emotions, Expectations and values, *Educational studies in Mathematics*, 49(1), 25-46.
- Higgins, K. (1997). The effect of year-long instruction in mathematical problem solving on middle-school students' attitudes, beliefs, and abilities. *Journal of Experimental Education*, 66(1), 5-29.

Hill, D. (2004). Student attitudes toward integrated mathematics. Academic Exchange Quarterly, 8(2), pp. 77-81.

- Ho, H., Senturk, D., Lam, A.G., Zimmer, J.M., Hong, S., Okamoto, Y., Chiu, S., Nakazawa, Y., and Wang, C. (2000). The affective and cognitive dimensions of math anxiety: A cross-national study. *Journal for Research in Mathematics Education*, 31(3), 362-379.
- Howie, S.J. (2005). Contextual factors at the school and classroom level related to pupils' performance in mathematics in South Africa. *Educational Research and Evaluation*, 11(2), 123-140.
- Isikal, M. and Cakiroglu, E. (2008). Gender differences regarding mathematics achievement: the case of Turkish middle school. School Science and Mathematics, 108(3), 113-120.
- Kinney, D. (2001). A comparison of computer-mediated and lecture classes in developmental mathematics. *Research and Teaching in Developmental Mathematics*, 18(1), 32-40.

- Koller, O., Baumert, J., and Schnable, K. (2001) Does interest matter? The relationship between academic interest and achievement in mathematics. *Journal for Research in Mathematics Education*, 32(5), 448-470.
- Maple, S. A., and Stage, F. K. (1991). Influences on the choice of math/science major by gender and ethnicity. *American Educational Research Journal*, 28(1), 37-60.
- Ma, X., and Kishor, N. (1997). Assessing the relationship between attitude toward mathematics and achievement in mathematics: A meta-analysis. *Journal for Research in Mathematics Education*, 28(1), 26-47.
- Ma, X. (1999). Dropping out of advanced mathematics: The effects of parental involvement. *Teachers College Record*, 101(1), 60-81.
- Ma, X., and Xu, J. (2004). Determining the causal ordering between attitude toward mathematics and achievement in mathematics. *American Journal of Education*, 110(3), 256-280.
- Mitchell, T. (1999). Changing student attitudes toward mathematics. Primary Educator, 5(4), 2-9.
- Oakes, J. (1990). Opportunities, achievement, and choice: Women and minority students in science and mathematics. *Review of Research in Education*, 16, 153-222.
- Olatunde, Y. P. (2009). Students attitude towards mathematics and academic achievement in some selected secondary schools in Southwest Nigeria. *European Journal of Scientific Research*, 36(3), 336-341.
- Pearce, K., Lungren, M., and Wince, A. (1999). The effects of curriculum practices on first graders' attitudes, activity preference, and achievements in mathematics.
- Education, 119(1), 82-90.
- Phonguttha, R., Tayraukham, S. and Nuangchalerm, P. (2009). Comparisons of Mathematics Achievement, Attitude towards Mathematics and Analytical Thinking between Using the Geometer's Sketchpad Program as Media and Conventional Learning Activities. *Australian Journal of Basic and Applied Sciences*, 3(3), 3036-3039.
- Popham, W. (2005). Students' attitudes count. Educational Leadership, 62(5), 84-85.
- Raymond, A., and Leinenbach, M. (2000). Collaborative action research on the learning
- and teaching of algebra: a story of one mathematics teacher's development. *Educational Studies in Mathematics*, 41(3), pp. 283-307.
- Sanchez, K., Zimmerman, L. and Ye, R. (2004) Secondary students' attitudes toward mathematics. *Academic Exchange Quarterly* Summer, 56-60.
- Singh, K., Granville, M., and Dika, S. (2002) Mathematics and science achievement: Effects of motivation, interest, and academic engagement. *The Journal of Educational Research*, 95(6), 323-332.
- Swan, M., Bell, A., Phillips, R., and Shannon, A. (2000). The purpose of mathematical activities and pupils' perceptions of them. *Research in Education*, 63, 199-223.
- Tapia, M. and Marsh II, G. (2004). The relationship of math anxiety and gender. Academic Exchange Quarterly summer, 130-134.
- Tapia, M. (1996). The Attitudes Toward Mathematics Instrument. *ERIC* Document Reproduction Service No. ED404165.
- Tapia, M. and Molavan, C. C. (2007). Attitudes toward mathematics of pre-calculus and calculus students, *Focus* on Learning Problems in Mathematics, 29(1), 48-59.
- Townsend, M., Moore, D., Tuck, B., and Wilton, K. (1998). Self-concept and anxiety in university students studying social science statistics within a cooperative learning structure. *Educational Psychology*, 18(1), 41-54.
- Tymms, P. (2001). A test of the big fish in a little pond hypothesis: An investigation into the feelings of sevenyear-old pupils in schools. *School Effectiveness and School Improvement*, **12**(2), pp. 161-181.
- Vaughan, W. (2002). Effects of cooperative learning on achievement and attitude among students of color. *The Journal of Educational Research*, 95(6), 359-364.
- Whitin, P. (2007). The mathematics survey: a tool for assessing attitudes and dispositions. *Teaching Children Mathematics*, 13(8), 426-432.
- Wilkins, J. and Ma, X. (2003). Modeling changes in student attitude toward and beliefs about mathematics. *The Journal of Educational Research*, 97(1), 52-63.
- Yusof, Y.M., and Tall, D. (1998). Changing attitudes to University mathematics through problem solving. *Educational Studies in Mathematics*, 37(1), 67-82.

Appendix - A

Dear Student:

This study aims at "Finding out Students Attitudes towards Mathematics at Khalifa University of Science Technology and Research (KUSTAR)".

The information gathered by the questionnaire will be used for educational research only and is not related to your achievement or your performance in mathematics. All results will be kept strictly secret. Please read each statement carefully and write your answers in the space provided.

By filling this questionnaire, you agree to participate in this study

Thank you very much for your cooperation.

The researcher

Demographic Information

Gender	Male	Female	
Date of Birth			
Nationality			
High School Type	Government	ate	
High School Average		University GPA	
Academic Level	Foundation	Degree	
Course & Grade	Pre-Calculus()	Calculus I()	Calculus II()

Attitudes Toward Mathematics Inventory (ATMI)

Directions: This inventory consists of statements about your attitude toward mathematics. There are no correct or incorrect responses. Read each item carefully. Please think about how you feel about each item. Circle the letter that most closely corresponds to how the statements best describes your feelings. Use the following response scale to respond to each item.

PLEASE USE THES	E RESPONSE	A – Strongly Disagree B – Disagree C – Neutral D – Agree E – Strongly Agree							
1. Mathematics is a very worthwhile and necessary subject.									
A Strongly Disagree	B Disagree	C Neutral	D Agree	E Strongly Agree					
2. I want to develop r	2. I want to develop my mathematical skills.								
A Strongly Disagree	B Disagree	C Neutral	D Agree	E Strongly Agree					
3. I get a great deal of	3. I get a great deal of satisfaction out of solving a mathematics problem.								
A Strongly Disagree	B Disagree	C Neutral	D Agree	E Strongly Agree					
4. Mathematics helps develop the mind and teaches a person to think.									

А	В	С	D	Е	Mathematics ma	akes me feel u	ncomfortable.		
Strongly Disagree	Disagree	Neutral	Agree	Strongly Agree	А	В	С	D	Е
					Strongly Disagree	Disagree	Neutral	Agree	Strongly Agre

5. Mathematics is important in everyday life. С Α в D

Strongly Disagree	Disagree	Neutral	Agree	Strongly Agre						
6. Mathematics is one	6. Mathematics is one of the most important subjects for people to study.									
A Strongly Disagree	B Disagree	C Neutral	D Agree	E Strongly Agre						
7. High school math courses would be very helpful no matter what I decide to stu										
A Strongly Disagree	B Disagree	C Neutral	D Agree	E Strongly Agre						
8. I can think of many	y ways that I us	e math outside	of school.							
A Strongly Disagree	B Disagree	C Neutral	D Agree	E Strongly Agre						
9. Mathematics is one	e of my most di	readed subjects								
A Strongly Disagree	B Disagree	C Neutral	D Agree	E Strongly Agre						
10. My mind goes bla mathematics.	ank and I am ur	nable to think c	learly when wo	rking with						
A Strongly Disagree	B Disagree	C Neutral	D Agree	E Strongly Agra						
11. Studying mathematics makes me feel nervous.										
A Strongly Disagree	B Disagree	C Neutral	D Agree	E Strongly Agre						
12. Mathematics mak	es me feel unc	omfortable.								
٨	р	C	D	F						

F

13. I am always under a terrible strain in a math class.				21. I feel a sense of insecurity when attempting mathematics.						
A Strongly Disagree	B Disagree	C Neutral	D Agree	E Strongly Agree	A Strongly Disagree	B Disagree	C Neutra	al A) .gree	E Strongly Agr
14. When I hear the v	word mathema	tics, I have a fe	eling of dislike		22. I learn mather	matics easily.				
A Strongly Disagree	B Disagree	C Neutral	D Agree	E Strongly Agree	A Strongly Disagree	B Disagree	C Neutra	ıl A) .gree	E Strongly Agr
15. It makes me nerv	ous to even thi	nk about havin	ıg to do a math	ematics problem.	23. I am confident that I could learn advanced mathematics.					
A Strongly Disagree	B Disagree	C Neutral	D Agree	E Strongly Agree	A Strongly Disagree	B Disagree	C Neutra	ı I) .gree	E Strongly Agr
16. Mathematics does	s not scare me	at all.			24. I have usually	enioved stud	ving mathen	natics in se	chool.	
A Strongly Disagree	B Disagree	C Neutral	D Agree	E Strongly Agree	A Strongly Disagree	B Disagree	C Neutra	ıl A) .gree	E Strongly Agr
17. I have a lot of sel	f-confidence w	when it comes t	o mathematics							
A Strongly Disagree	B Disagree	C Neutral	D Agree	E Strongly Agree	25. Mathematics	B Disagree	ring. C Neutra	I)	E Strongly Agr
18. I am able to solve	mathematics	problems with	out too much d	ifficulty.	Subligly Disagree	Disagree	Iveuur	u 7	gree	Subligiy Agi
A B C D E Strongly Disagree Disagree Neutral Agree Strongly Agree					26. I like to solve	new problem	is in mathem	atics.		
19. I expect to do fair	ly well in any	math class I ta	ke.	Subligiy Agree	A Strongly Disagree	B Disagree	C Neutra	il A) .gree	E Strongly Agr
A Strongly Disagree	B Disagree	C Neutral	D Agree	E Strongly Agree	27. I would prefe	r to do an assi	gnment in m	nath than te	o write an e	ssay.
20 Lam always confi	used in my ma	thematics class		0, 0	A Strongly Disagree	B Disagree	C Neutra	al A) .gree	E Strongly Agr
A	B	C	D	Е						
Strongly Disagree	Disagree	Neutral	Agree	Strongly Agree	28. I would like to	o avoid using B	mathematics	s in colleg	e.	F
29. I really like matl	nematics.				Strongly Disagree	Disagree	Neutra v own ideas or	al A	.gree ok for solutio	Strongly Agr
A	в	С	D	E	problem in math	l.	, e nii 10000 ei			
Strongly Disagree	Disagree	Neutral	Agree	Strongly Agree	A Strongly Disagree	B Disagree	C Neutral	D Agree	E Strong	ly Agree
30. I am happier in a	a math class th	an in any othe	r class.		38. I am comfortabl	e answering qu	estions in matl	h class.		
A Strongly Disagree	B Disagree	C Neutral	D Agree	E Strongly Agree	A Strongly Disagree	B Disagree	C Neutral	D Agree	E Strong	ly Agree
31. Mathematics is a	a very interesti	ing subject.			39. A strong math background could help me in my professional life.					
A Strongly Disagree	B Disagree	C Neutral	D Agree	E Strongly Agree	A Strongly Disagree	B Disagree	C Neutral	D Agree	E Strong	ly Agree
32. I am willing to t	ake more than	the required a	mount of math	ematics.	40. I believe I am good at solving math problems.					
A Strongly Disagree	B Disagree	C Neutral	D Agree	E Strongly Agree	A Strongly Disagree	B Disagree	C Neutral	D Agree	E Strong	ly Agree
33. I plan to take as	much mathem	atics as I can o	luring my educ	cation.						
A Strongly Disagree	B Disagree	C Neutral	D Agree	E Strongly Agree						
34. The challenge of	f math appeals	to me.								
A	B	C	D	E						
Strongly Disagree	Disagree	Neutral	Agree	Strongly Agree						
35. I think studying	advanced mat	hematics is use	eful.	_						
A Strongly Disagree	B Disagree	C Neutral	D Agree	E Strongly Agree						
36. I believe studyin	ig math helps i	me with proble	em solving in c	ther areas.						
A Strongly Disagree	B Disagree	C Neutral	D Agree	E Strongly Agree						

(Tapia, 1996)