PAPER DETAILS

TITLE: On a second-order evolution inclusion

AUTHORS: Aurelian CERNEA

PAGES: 99-106

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/591548

Results in Nonlinear Analysis ${f 1}$ (2018) No. 3, 99–106 Available online at www.nonlinear-analysis.com

Results in Nonlinear Analysis

ISSN 2636-7556

Peer Reviewed Scientific Journal

On a second-order evolution inclusion

Aurelian Cernea^{a,b}

^a Faculty of Mathematics and Computer Science, University of Bucharest, Academiei 14, 010014 Bucharest, Romania.

Abstract

We study a class of second-order evolution inclusions and we obtain a sufficient condition for f-local controllability along a reference trajectory.

Keywords: Differential inclusion, Local controllability, Mild solution.

2010 MSC: 34A60.

1. Introduction

In this note we are concerned with the following problem

$$x'' \in A(t)x + F(t,x), \quad x(0) \in X_0, \quad x'(0) \in X_1,$$
 (1.1)

where $F: [0,T] \times X \to \mathcal{P}(X)$ is a set-valued map, X is a separable Banach space, $X_0, X_1 \subset X$ and $\{A(t)\}_{t\geq 0}$ is a family of linear closed operators from X into X that generates an evolution system of operators $\{\mathcal{U}(t,s)\}_{t,s\in[0,T]}$.

The general framework of evolution operators $\{A(t)\}_{t\geq 0}$ that define problem (1.1) has been developed by Kozak ([14]) and improved by Henriquez ([12]). In several recent papers ([2-5], [8-11]) existence results and qualitative properties of solutions for problem (1.1) have been obtained by using several techniques.

The aim of the present paper is to obtain a sufficient condition for f-local controllability of inclusion (1.1). We denote by S_F be the set of all mild solutions of (1.1) and by $R_F(T)$ the reachable set of (1.1). If $y(.) \in S_F$ is a mild solution and if $f: \mathbf{R}^n \to \mathbf{R}^m$ is a locally Lipschitz function then we say that the differential inclusion (1.1) is f-locally controllable around y(.) if $h(y(T)) \in \text{int}(f(R_F(T)))$. In particular, if f is the identity map the above definitions reduces to the usual concept of local controllability of systems around a solution.

The proof of our result is based on an approach of Tuan ([16]). More precisely, we prove that inclusion (1.1) is f-locally controllable around the solution y(.) if a certain variational inclusion is h-locally controllable

^b Academy of Romanian Scientists, Splaiul Independenței 54, 050094 Bucharest, Romania.

around the null solution for every $h \in \partial f(z(T))$, where $\partial f(z)$ denotes Clarke's generalized Jacobian of the locally Lipschitz function f. The main tools in the proof of our result is a continuous version of Filippov's theorem for mild solutions of problem (1.1) obtained in [8] and a certain generalization of the classical open mapping principle in [17].

We note that similar results for other classes of differential inclusions may be found in our previous papers [6,7].

The paper is organized as follows: in Section 2 we present some preliminary results to be used in the sequel and in Section 3 we present our main results.

2. Preliminaries

Let us denote by I the interval [0,T] and let X be a real separable Banach space with the norm |.| and with the corresponding metric d(.,.). Denote by $\mathcal{L}(I)$ the σ -algebra of all Lebesgue measurable subsets of I, by $\mathcal{P}(X)$ the family of all nonempty subsets of X and by $\mathcal{B}(X)$ the family of all Borel subsets of X. Recall that the Pompeiu-Hausdorff distance of the closed subsets $A, B \subset X$ is defined by

$$d_H(A, B) = \max\{d^*(A, B), d^*(B, A)\}, \quad d^*(A, B) = \sup\{d(a, B); a \in A\},$$

where $d(x, B) = \inf_{y \in B} d(x, y)$.

As usual, we denote by C(I,X) the Banach space of all continuous functions $x(.):I\to X$ endowed with the norm $||x(.)||_C = \sup_{t \in I} ||x(t)||$, by $L^1(I, X)$ the Banach space of all (Bochner) integrable functions $x(.): I \to X$ endowed with the norm $||x(.)||_1 = \int_I ||x(t)|| dt$ and by B(X) the Banach space of linear bounded operators on X.

In what follows $\{A(t)\}_{t\geq 0}$ is a family of linear closed operators from X into X that generates an evolution system of operators $\{\mathcal{U}(t,s)\}_{t,s\in I}$. By hypothesis the domain of A(t), D(A(t)) is dense in X and is independent of t.

Definition 2.1. ([12,14]) A family of bounded linear operators $\mathcal{U}(t,s): X \to X$, $(t,s) \in \Delta := \{(t,s) \in A\}$ $I \times I$; $s \leq t$ is called an evolution operator of the equation

$$x''(t) = A(t)x(t) \tag{2.1}$$

if

- i) For any $x \in X$, the map $(t,s) \to \mathcal{U}(t,s)x$ is continuously differentiable and
 - a) $U(t,t) = 0, t \in I$.
- b) If $t \in I$, $x \in X$ then $\frac{\partial}{\partial t} \mathcal{U}(t,s) x|_{t=s} = x$ and $\frac{\partial}{\partial s} \mathcal{U}(t,s) x|_{t=s} = -x$. ii) If $(t,s) \in \Delta$, then $\frac{\partial}{\partial s} \mathcal{U}(t,s) x \in D(A(t))$, the map $(t,s) \to \mathcal{U}(t,s) x$ is of class C^2 and

 - a) $\frac{\partial^2}{\partial t^2} \mathcal{U}(t,s) x \equiv A(t) \mathcal{U}(t,s) x$. b) $\frac{\partial^2}{\partial s^2} \mathcal{U}(t,s) x \equiv \mathcal{U}(t,s) A(t) x$.
 - c) $\frac{\partial^2}{\partial s \partial t} \mathcal{U}(t, s) x|_{t=s} = 0.$
- iii) If $(t,s) \in \Delta$, then there exist $\frac{\partial^3}{\partial t^2 \partial s} \mathcal{U}(t,s)x$, $\frac{\partial^3}{\partial s^2 \partial t} \mathcal{U}(t,s)x$ and
 - a) $\frac{\partial^3}{\partial t^2 \partial s} \mathcal{U}(t,s) x \equiv A(t) \frac{\partial}{\partial s} \mathcal{U}(t,s) x$ and the map $(t,s) \to A(t) \frac{\partial}{\partial s} \mathcal{U}(t,s) x$ is continuous. b) $\frac{\partial^3}{\partial s^2 \partial t} \mathcal{U}(t,s) x \equiv \frac{\partial}{\partial t} \mathcal{U}(t,s) A(s) x$.

As an example for equation (2.1) one may consider the problem (e.g., [12])

$$\frac{\partial^2 z}{\partial t^2}(t,\tau) = \frac{\partial^2 z}{\partial \tau^2}(t,\tau) + a(t)\frac{\partial z}{\partial t}(t,\tau), \quad t \in [0,T], \tau \in [0,2\pi],$$

$$z(t,0) = z(t,\pi) = 0, \quad \frac{\partial z}{\partial \tau}(t,0) = \frac{\partial z}{\partial \tau}(t,2\pi), \ t \in [0,T],$$

where $a(.): I \to \mathbf{R}$ is a continuous function. This problem is modeled in the space $X = L^2(\mathbf{R}, \mathbf{C})$ of 2π -periodic 2-integrable functions from \mathbf{R} to \mathbf{C} , $A_1z = \frac{d^2z(\tau)}{d\tau^2}$ with domain $H^2(\mathbf{R}, \mathbf{C})$ the Sobolev space of 2π -periodic functions whose derivatives belong to $L^2(\mathbf{R}, \mathbf{C})$. It is well known that A_1 is the infinitesimal generator of strongly continuous cosine functions C(t) on X. Moreover, A_1 has discrete spectrum; namely the spectrum of A_1 consists of eigenvalues $-n^2$, $n \in \mathbf{Z}$ with associated eigenvectors $z_n(\tau) = \frac{1}{\sqrt{2\pi}}e^{in\tau}$, $n \in \mathbf{N}$. The set z_n , $n \in \mathbf{N}$ is an orthonormal basis of X. In particular, $A_1z = \sum_{n \in \mathbf{Z}} -n^2 < z, z_n > z_n, z \in D(A_1)$. The cosine function is given by $C(t)z = \sum_{n \in \mathbf{Z}} \cos(nt) < z, z_n > z_n$ with the associated sine function $S(t)z = t < z, z_0 > z_0 + \sum_{n \in \mathbf{Z}^*} \frac{\sin(nt)}{n} < z, z_n > z_n$.

For $t \in I$ define the operator $A_2(t)z = a(t)\frac{dz(\tau)}{d\tau}$ with domain $D(A_2(t)) = H^1(\mathbf{R}, \mathbf{C})$. Set $A(t) = A_1 + A_2(t)$. It has been proved in [12] that this family generates an evolution operator as in Definition 1.

Definition 2.2. A continuous mapping $x(.) \in C(I, X)$ is called a mild solution of problem (1.1) if there exists a (Bochner) integrable function $f(.) \in L^1(I, X)$ such that

$$f(t) \in F(t, x(t)) \quad a.e. (I), \tag{2.2}$$

$$x(t) = -\frac{\partial}{\partial s} \mathcal{U}(t,0)x_0 + \mathcal{U}(t,0)y_0 + \int_0^t \mathcal{U}(t,s)f(s)ds, \ t \in I.$$
 (2.3)

We shall call (x(.), f(.)) a trajectory-selection pair of (1.1) if f(.) verifies (2.2) and x(.) is defined by (2.3).

Hypothesis H1. i) $F(.,.): I \times X \to \mathcal{P}(X)$ has nonempty closed values and is $\mathcal{L}(I) \otimes \mathcal{B}(X)$ measurable. ii) There exists $l(.) \in L^1(I, \mathbf{R}_+)$ such that, for any $t \in I, F(t,.)$ is l(t)-Lipschitz in the sense that

$$d_H(F(t,x_1),F(t,x_2)) \le l(t)|x_1-x_2| \quad \forall x_1,x_2 \in X.$$

Hypothesis H2. Let S be a separable metric space, $X_0, X_1 \subset X$ are closed sets, $a_0(.): S \to X_0, a_1(.): S \to X_1$ and $c(.): S \to (0, \infty)$ are given continuous mappings.

The continuous mappings $g(.): S \to L^1(I,X), y(.): S \to C(I,X)$ are given such that

$$(y(s))''(t) = A(t)y(s)(t) + g(s)(t), \quad y(s)(0) \in X_0, \quad (y(s))'(0) \in X_1.$$

and there exists a continuous function $q(.): S \to L^1(I, \mathbf{R}_+)$ such that

$$d(g(s)(t), F(t, y(s)(t))) \le q(s)(t)$$
 a.e. $(I), \forall s \in S.$ (2.4)

Theorem 2.3. ([10]) Assume that Hypotheses H1 and H2 are satisfied.

Then there exist M > 0 and the continuous functions $x(.): S \to L^1(I,X)$, $h(.): S \to C(I,X)$ such that for any $s \in S$ (x(s)(.),h(s)(.)) is a trajectory-selection of (1.1) satisfying for any $(t,s) \in I \times S$

$$x(s)(0) = a_0(s), (x(s))'(0) = a_1(s),$$

$$|x(s)(t) - y(s)(t)| \le M[c(s) + |a_0(s) - y(s)(0)| + |a_1(s) - (y(s))'(0)| + \int_0^t q(s)(u)du]. \tag{2.5}$$

In what follows we assume that $X = \mathbf{R}^n$.

A closed convex cone $C \subset \mathbf{R}^n$ is said to be regular tangent cone to the set X at $x \in X$ ([16]) if there exists continuous mappings $q_{\lambda}: C \cap B \to \mathbf{R}^n$, $\forall \lambda > 0$ satisfying

$$\lim_{\lambda \to 0+} \max_{v \in C \cap B} \frac{|q_{\lambda}(v)|}{\lambda} = 0,$$

$$x + \lambda v + q_{\lambda}(v) \in X \quad \forall \lambda > 0, v \in C \cap B$$

where B is the closed unit ball in \mathbf{R}^n .

We recall, also, some well known intrinsic tangent cones in the literature (e.g. [1]); namely, the *contingent*, the *quasitangent* and *Clarke's tangent cones*, defines, respectively, by

$$\begin{split} K_x X &= \{v \in \mathbf{R}^n; \quad \exists \, s_m \to 0+, \, x_m \in X: \, \frac{x_m - x}{s_m} \to v\} \\ Q_x X &= \{v \in \mathbf{R}^n; \quad \forall \, s_m \to 0+, \, \exists x_m \in X: \, \frac{x_m - x}{s_m} \to v\} \\ C_x X &= \{v \in \mathbf{R}^n; \, \forall \, (x_m, s_m) \to (x, 0+), \, x_m \in X, \, \exists \, y_m \in X: \, \frac{y_m - x_m}{s_m} \to v\}. \end{split}$$

In is known that, unlike K_xX, Q_xX , the cone C_xX is convex and one has $C_xX \subset Q_xX \subset K_xX$.

The results in the next section will be expressed, in the case when the mapping $f(.): X \subset \mathbf{R}^n \to \mathbf{R}^m$ is locally Lipschitz at x, in terms of the Clarke generalized Jacobian, defined by ([11])

$$\partial f(x) = \operatorname{co}\{\lim_{i \to \infty} f'(x_i); \quad x_i \to x, \quad x_i \in X \setminus J_f\},$$

where J_f is the set of points at which f is not differentiable.

Corresponding to each type of tangent cone, say $\tau_x X$ one may introduce (e.g. [1]) a set-valued directional derivative of a multifunction $G(.): X \subset \mathbf{R}^n \to \mathcal{P}(\mathbf{R}^n)$ (in particular of a single-valued mapping) at a point $(x,y) \in \operatorname{graph}(G)$ as follows

$$\tau_y G(x; v) = \{ w \in \mathbf{R}^n; (v, w) \in \tau_{(x,y)} \operatorname{graph}(G) \}, \in \tau_x X.$$

We recall that a set-valued map, $A(.): \mathbf{R}^n \to \mathcal{P}(\mathbf{R}^n)$ is said to be a *convex* (respectively, closed convex) process if graph $(A(.)) \subset \mathbf{R}^n \times \mathbf{R}^n$ is a convex (respectively, closed convex) cone. For the basic properties of convex processes we refer to [1], but we shall use here only the above definition.

Hypothesis H3. i) Hypothesis H1 is satisfied and $X_0, X_1 \subset \mathbf{R}^n$ are closed sets.

ii) $(y(.), g(.)) \in C(I, \mathbf{R}^n) \times L^1(I, \mathbf{R}^n)$ is a trajectory-selection pair of (1.1) and a family $L(t, .) : \mathbf{R}^n \to \mathcal{P}(\mathbf{R}^n)$, $t \in I$ of convex processes satisfying the condition

$$L(t,u) \subset Q_{g(t)}F(t,.)(y(t);u) \quad \forall u \in dom(P(t,.)), \ a.e. \ t \in I$$
 (2.6)

is assumed to be given.

The family of convex processes in Hypothesis H3 defines the variational inclusion

$$v'' \in A(t)v + L(t,v). \tag{2.7}$$

Remark 2.4. We point out that Hypothesis H3 is not restrictive, since for any set-valued map F(.,.), one may find an infinite number of families of convex processes L(t,.), $t \in I$, satisfying condition (2.6). Any family of closed convex subcones of the quasitangent cones, $\overline{L}(t) \subset Q_{(y(t),g(t))}graph(F(t,.))$, defines the family of closed convex processes

$$L(t, u) = \{v \in \mathbf{R}^n; (u, v) \in \overline{L}(t)\}, \quad u, v \in \mathbf{R}^n, t \in I$$

that satisfy condition (2.6). For example one may take an "intrinsic" family of such closed convex process given by Clarke's convex-valued directional derivatives $C_{g(t)}F(t,.)(y(t);.)$.

Since F(t, .) is assumed to be Lipschitz a.e. on I, the quasitangent directional derivative is given by ([1])

$$Q_{g(t)}F(t,.)((y(t);u)) = \{ w \in \mathbf{R}^n; \lim_{\theta \to 0+} \frac{1}{\theta} d(g(t) + \theta w, F(t,y(t) + \theta u)) = 0 \}.$$
 (2.8)

In what follows $B_{\mathbf{R}^n}$ denotes the closed unit ball in \mathbf{R}^n and 0_n denotes the null element in \mathbf{R}^n . Consider $f: \mathbf{R}^n \to \mathbf{R}^m$ an arbitrary given function.

Definition 2.5. Differential inclusion (1.1) is said to be f-locally controllable around y(.) if $f(y(T)) \in \text{int}(f(R_F(T)))$.

In particular, differential inclusion (1.1) is said to be *locally controllable* around the solution y(.) if $y(T) \in \text{int}(R_F(T))$.

Finally a key tool in the proof of our results is the following generalization of the classical open mapping principle due to Warga ([17]).

For $k \in \mathbf{N}$ we define

$$\Sigma_k := \{ \beta = (\beta_1, ..., \beta_k); \quad \sum_{i=1}^k \beta_i \le 1, \quad \beta_i \ge 0, \ i = 1, 2, ..., k \}.$$

Lemma 2.6. ([17]) Let $\delta \leq 1$, let $g(.): \mathbf{R}^n \to \mathbf{R}^m$ be a mapping that is C^1 in a neighborhood of 0_n containing $\delta B_{\mathbf{R}^n}$. Assume that there exists $\beta > 0$ such that for every $\theta \in \delta \Sigma_n$, $\beta B_{\mathbf{R}^m} \subset g'(\theta)\Sigma_n$. Then, for any continuous mapping $\varphi : \delta \Sigma_n \to \mathbf{R}^m$ that satisfies $\sup_{\theta \in \delta \Sigma_n} |g(\theta) - \varphi(\theta)| \leq \frac{\delta \beta}{32}$ we have $\varphi(0_n) + \frac{\delta \beta}{16} B_{\mathbf{R}^m} \subset \varphi(\delta \Sigma_n)$.

3. The main result

In order to prove our result we assume that Hypothesis H3 is satisfied, C_0 is a regular tangent cone to X_0 at y(0) and C_1 is a regular tangent cone to X_1 at y'(0). We denote by S_L the set of all solutions of the differential inclusion

$$w'' \in A(t)w + L(t, w), \quad w(0) \in C_0, \quad w'(0) \in C_1$$

and by $R_L(T) = \{x(T); x(.) \in S_L\}$ its reachable set at time T.

Theorem 3.1. Assume that Hypothesis H3 is satisfied and let $f : \mathbf{R}^n \to \mathbf{R}^m$ be a Lipschitz function with m its Lipschitz constant.

Then, differential inclusion (1.1) is f-locally controllable around the solution y(.) if

$$0_m \in int(hR_L(T)) \quad \forall h \in \partial f(y(T)).$$
 (3.1)

Proof. $hR_L(T)$ is a convex cone, thus, by (3.1), it follows that $hR_L(T) = \mathbf{R}^m \ \forall h \in \partial f(y(T))$. Taking into account that the set $\partial f(y(T))$ is compact (e.g., [11]), we have that for every $\gamma > 0$ there exist $k \in \mathbf{N}$ and $w_j \in R_L(T)$ j = 1, 2, ..., k such that

$$\gamma B_{\mathbf{R}^m} \subset h(w(\Sigma_k)) \quad \forall h \in \partial f(y(T)),$$
(3.2)

with

$$w(\Sigma_k) = \{w(\beta) := \sum_{j=1}^k \beta_j w_j, \quad \beta = (\beta_1, ..., \beta_k) \in \Sigma_k\}.$$

Using an usual separation theorem we deduce the existence of $\gamma_1, r_1 > 0$ such that for all $h \in L(\mathbf{R}^n, \mathbf{R}^m)$ with $d(h, \partial f(y(T))) \le r_1$ we have

$$\gamma_1 B_{\mathbf{R}^m} \subset h(w(\Sigma_k)). \tag{3.3}$$

Since $w_j \in R_L(T)$, j = 1, ..., k, there exist $(w_j(.), q_j(.))$, j = 1, ..., k trajectory-selection pairs of (2.7) such that $w_j = w_j(T)$, j = 1, ..., k. We note that $\gamma > 0$ can be taken small enough such that $|w_j(0)| \le 1$, j = 1, ..., k.

Define

$$w(t,s) = \sum_{j=1}^{k} s_j w_j(t), \quad \overline{q}(t,s) = \sum_{j=1}^{k} s_j q_j(t), \quad \forall s = (s_1, ..., s_k) \in \mathbf{R}^k.$$

Obviously, $w(.,s) \in S_L$, $\forall s \in \Sigma_k$.

From the definition of C_0 and C_1 we find that for every $\varepsilon > 0$ there exists a continuous mapping $o_{\varepsilon} : \Sigma_k \to \mathbf{R}^n$ such that

$$y(0) + \varepsilon w(0, s) + o_{\varepsilon}(s) \in X_0, \quad y'(0) + \varepsilon \frac{\partial w}{\partial t}(0, s) + o_{\varepsilon}(s) \in X_1$$
 (3.4)

$$\lim_{\varepsilon \to 0+} \max_{s \in \Sigma_k} \frac{|o_{\varepsilon}(s)|}{\varepsilon} = 0. \tag{3.5}$$

Define

$$\rho_{\varepsilon}(s)(t) := \frac{1}{\varepsilon} d(\overline{q}(t,s), F(t,y(t) + \varepsilon w(t,s)) - g(t)),$$

$$d(t) := \sum_{j=1}^{k} [||q_{j}(t)|| + l(t)||w_{j}(t)||], \quad t \in I.$$

Then, for every $s \in \Sigma_k$ one has

$$\rho_{\varepsilon}(s)(t) \leq |\overline{q}(t,s)| + \frac{1}{\varepsilon} d_H(0_n, F(t,y(t) + \varepsilon w(t,s)) - g(t)) \leq |\overline{q}(t,s)| + \frac{1}{\varepsilon} d_H(F(t,y(t)), F(t,y(t) + \varepsilon w(t,s))) \leq |\overline{q}(t,s)| + |t(t)||w(t,s)|| \leq d(t).$$

$$(3.6)$$

Next, if $s_1, s_2 \in \Sigma_k$ one has

$$|\rho_{\varepsilon}(s_{1})(t) - \rho_{\varepsilon}(s_{2})(t)| \leq |\overline{q}(t, s_{1}) - \overline{q}(t, s_{2})| + \frac{1}{\varepsilon} d_{H}(F(t, y(t) + \varepsilon w(t, s_{1})), F(t, y(t) + \varepsilon w(t, s_{2}))) \leq |s_{1} - s_{2}| \cdot \max_{j=\overline{1,k}} [|q_{j}(t)| + l(t)|w_{j}(t)|],$$

thus $\rho_{\varepsilon}(.)(t)$ is Lipschitz with a Lipschitz constant not depending on ε .

At the same time, from (2.8) it follows that

$$\lim_{\varepsilon \to 0} \rho_{\varepsilon}(s)(t) = 0 \quad a.e.(I), \quad \forall s \in \Sigma_k$$

and hence

$$\lim_{\varepsilon \to 0+} \max_{s \in \Sigma_k} \rho_{\varepsilon}(s)(t) = 0 \quad a.e. (I). \tag{3.7}$$

Lebesgue's dominated convergence theorem, (3.6) and (3.7) imply that

$$\lim_{\varepsilon \to 0+} \int_0^T \max_{s \in \Sigma_k} \rho_{\varepsilon}(s)(t)dt = 0.$$
 (3.8)

From (3.4), (3.5), (3.8) and the upper semicontinuity of the Clarke generalized Jacobian we can find $\varepsilon_0, e_0 > 0$ such that

$$\max_{s \in \Sigma_k} \frac{||o_{\varepsilon_0}(s)||}{\varepsilon_0} + \int_0^T \max_{s \in \Sigma_k} \rho_{\varepsilon_0}(s)(t) dt \le \frac{\gamma_1}{2^8 m^2}, \tag{3.9}$$

$$\varepsilon_0 w(T, s) \le \frac{e_0}{2} \quad \forall s \in \Sigma_k.$$
(3.10)

We define

$$y(s)(t) := y(t) + \varepsilon_0 w(t, s), \quad g(s)(t) := g(t) + \varepsilon_0 \overline{q}(t, s) \quad s \in \mathbf{R}^k,$$

$$a_0(s) := y(0) + \varepsilon_0 w(0, s) + o_{\varepsilon_0}(s), \quad a_1(s) := y'(0) + \varepsilon_0 \frac{\partial w}{\partial t}(0, s) + o_{\varepsilon_0}(s), \ s \in \mathbf{R}^k,$$

and we apply Theorem 2.3 in order to obtain that there exists a continuous function $x(.): \Sigma_k \to C(I, \mathbf{R}^n)$ such that for any $s \in \Sigma_k$ the function x(s)(.) is a mild solution of the differential inclusion $x'' \in A(t)x + F(t,x)$, $x(s)(0) = a_0(s)$, $(x(s))'(0) = a_1(s)$ $\forall s \in \Sigma_k$ and one has

$$||x(s)(T) - y(s)(T)|| \le \frac{\varepsilon_0 \gamma_1}{2^6 m} \quad \forall s \in \Sigma_k.$$
 (3.11)

We define

$$f_0(x) := \int_{\mathbf{R}^n} f(x - ay) \chi(y) dy, \quad x \in \mathbf{R}^n,$$

$$\psi(s) := f_0(y(T) + \varepsilon_0 w(T, s)),$$

where $\chi(.): \mathbf{R}^n \to [0,1]$ is a C^{∞} function with the support contained in $B_{\mathbf{R}^n}$ that satisfies $\int_{\mathbf{R}^n} \chi(y) dy = 1$ and $a = \min\{\frac{e_0}{2}, \frac{\varepsilon_0 \gamma_1}{2 \theta_m}\}$.

Hence $f_0(.)$ is of class C^{∞} and verifies

$$||f(x) - f_0(x)|| \le m \cdot a,$$
 (3.12)

$$f_0'(x) = \int_{\mathbf{R}^n} f'(x - ay)\chi(y)dy.$$
 (3.13)

In particular,

$$f'_0(x) \in \overline{\operatorname{co}}\{f'(u); \quad ||u - x|| \le a, \quad f'(u) \text{ exists}\},$$

$$\psi'(s)\mu = f'_0(y(T) + \varepsilon_0 w(T, s))\varepsilon_0 w(T, \mu) \quad \forall \mu \in \Sigma_k.$$

If we denote $h(s) := f'_0(y(T) + \varepsilon_0 w(T, s))$, then $\psi'(s)\mu = h(s)\varepsilon_0 w(T, \mu) \ \forall \mu \in \Sigma_k$.

Taking into account, again, the upper semicontinuity of the Clarke generalized Jacobian we obtain

$$d(h(s), \partial f(z(T))) = d(f'_0(y(T) + \varepsilon_0 w(T, s)), \partial f(y(T))) \le \sup\{d(f'_0(u), \partial f(y(T))); ||u - y(T)|| \le ||u - (y(T) + \varepsilon_0 w(T, s))|| + ||\varepsilon_0 w(t, s)|| \le e_0, \quad f'(u) \text{ exists}\} < r_1.$$

The last inequality together with (3.3) gives

$$\gamma_1 B_{\mathbf{R}^m} \subset h(s) w(\Sigma_k).$$

and therefore

$$\varepsilon_0 \gamma_1 B_{\mathbf{R}^m} \subset h(s) \varepsilon_0 w(\Sigma_k) = h(s) \varepsilon_0 w(T, \mu) = \psi'(s) \mu, \quad \forall \mu \in \Sigma_k,$$

i.e.,

$$\varepsilon_0 \gamma_1 B_{\mathbf{R}^m} \subset \psi'(s) \Sigma_k$$
.

Finally, for $s \in \Sigma_k$, we put $\varphi(s) = f(x(s)(T))$.

Obviously, $\varphi(.)$ is continuous and from (3.11), (3.12), (3.13) one may write

$$\begin{aligned} |\varphi(s) - \psi(s)| &= |f(x(s)(T)) - f_0(y(s)(T))| \le |f(x(s)(T)) - f(y(s)(T))| + \\ |f(y(s)(T)) - f_0(y(s)(T))| &\le m|x(s)(T) - y(s)(T)| + m \cdot a \le \frac{\varepsilon_0 \gamma_1}{64} + \frac{\varepsilon_0 \gamma_1}{64} = \frac{\varepsilon_0 \gamma_1}{32}. \end{aligned}$$

It remains to apply Lemma 2.6 and to find that

$$f(x(0_k)(T)) + \frac{\varepsilon_0 \gamma_1}{16} B_{\mathbf{R}^m} \subset \varphi(\Sigma_k) \subset f(R_F(T)).$$

Finally, $|f(y(T)) - f(x(0_k)(T))| \le \frac{\varepsilon_0 \gamma_1}{64}$, so we have $f(z(T)) \in \text{int}(f(R_F(T)))$, which completes the proof.

References

- [1] J.P.Aubin, H.Frankowska, Set-valued Analysis, Birkhauser, Basel, 1990.
- [2] A.Baliki, M.Benchohra, J.R. Graef, Global existence and stability of second order functional evolution equations with infinite delay, *Electronic J. Qual. Theory Differ. Equations*, **2016**, no. 23, (2016), 1–10.
- [3] A.Baliki, M.Benchohra, J.J. Nieto, Qualitative analysis of second-order functional evolution equations, *Dynamic Syst.* Appl., **24** (2015), 559–572.
- [4] M.Benchohra, I.Medjadj, Global existence results for second order neutral functional differential equations with state-dependent delay, Comment. Math. Univ. Carolin. 57, (2016), 169–183.
- [5] M. Benchohra, N. Rezzoug, Measure of noncompactness and second-order evolution equations, Gulf J. Math., 4 (2016), 71–79.
- [6] A.Cernea, On controllability for Sturm-Liouville type differential inclusions, Filomat, 27 (2013), 1321–1327.
- [7] A.Cernea, On controllability for nonconvex semilinear differential inclusions, J. Nonlinear Sci. Appl., 6 (2013), 145–151.
- [8] A.Cernea, A note on the solutions of a second-order evolution inclusion in non separable Banach spaces, Comment. Math. Univ. Carolin., 58 (2017), 307–314.
- [9] A.Cernea, Some remarks on the solutions of a second-order evolution inclusion, Dynamic Syst. Appl., 27 (2018), 319–330.

- [10] A. Cernea, Continuous selections of solution sets of a second-order integro-differential inclusion, *Differential and Difference Equations with Application, Springer Proceedings in Mathematics and Statistics*, **230**, Editors S. Pinelas, T. Caraballo, J. Graef, P. Kloeden, Springer, Cham, 2018, 53–65.
- [11] F.H.Clarke, Optimization and Nonsmooth Analysis, Wiley Interscience, New York, 1983.
- [12] H.R.Henriquez, Existence of solutions of nonautonomous second order functional differential equations with infinite delay, *Nonlinear Anal.*, **74** (2011), 3333–3352.
- [13] H.R.Henriquez, V.Poblete, J.C. Pozo, Mild solutions of non-autonomous second order problems with nonlocal initial conditions, *J. Math. Anal. Appl.*, **412** (2014), 1064–1083.
- [14] M.Kozak, A fundamental solution of a second-order differential equation in a Banach space, *Univ. Iagel. Acta. Math.*, **32** (1995), 275–289.
- [15] E.S.Polovinkin, G.V.Smirnov, An approach to differentiation of many-valued mapping and necessary condition for optimization of solution of differential inclusions, *Differential Equations*, **22** (1986), 660–668.
- [16] H.D.Tuan, On controllability and extremality in nonconvex differential inclusions, J. Optim. Theory Appl., 85 (1995) 437–474.
- [17] J.Warga, Controllability, extremality and abnormality in nonsmooth optimal control, J. Optim. Theory Appl., 41 (1983) 239–260.