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Abstract

In this paper, we pursue and investigate the solutions for fractional kinetic equations, involving q−Bessel
function by means of their Sumudu transforms. In the process, one Important special case is then revealed.
The results obtained in terms of q−Bessel function are rather general in nature and can easily construct
various known and new fractional kinetic equations.

Keywords: Fractional kinetic equation Generalized Mittag-Le�er function q−Bessel function Sumudu
Transform.
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1. Introduction

Fractional calculus (FC) is a useful mathematical method for studying fractional-order integrals and
derivatives. Fractional calculus has developed and is now used in a variety of engineering and analysis �elds.
The theory of fractional di�erential equations and its applications has played a vital role in a variety of
�elds, including material science, applied research, chemistry, mathematical physics, and architecture. The
theory and implementations of fractional di�erential equations have played a crucial role. The complicated
conditions program is based on di�erential equations and depicts the amount of chemical composition mod-
i�cation a star undergoes as a result of each con�guration in terms of generation and annihilation reaction
levels.[16, 17, 18, 19, 25, 26] is a good example.
Because of their relevance in astronomy and scienti�c material science, there has recently been a surge in
interest in learning about the solution of fractional kinetic equations. The fractional-order kinetic equations
have been successfully used to determine various physical issues such as di�usion in permeable mediums and

Email addresses: dypawar@yahoo.com (Dnyaneshwar D. Pawar), wagdialakel@gmail.com (Wagdi F.S. Ahmed)

Received October 18, 2021, Accepted March 12, 2022, Online March 16, 2022



D.D. Pawar, W.F.S. Ahmed, Results in Nonlinear Anal. 5 (2022), 87�95. 88

response and unwinding forms in complicated frameworks. As a result, there has been a considerable amount
of study into the application of these equations. Look into it [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 24].
In 2000, Haubold and Mathai [13] created the fractional di�erential equation between the rate of change of
the reaction, the production rate, and the destruction rates given as follows:

dN

dt
= −d(Nt) + p(Nt),

where d = d(N) the rate of destruction, N = N(t), the rate of reaction, p = p(N) the rate of production
and Nt is the function identi�ed by

Nt(t
∗
1) = N(t− t∗1), t

∗
1 > 0,

ignoring the inhomogeneity in the quantity N(t) that is the equation

dNi

dt
= −ciNi(t), (1)

is a part of the initial condition Ni(t = 0) = N0 is the density number of the index (ıiȷ) at time (t = 0).

The solution of equation (1) can be referred to

Ni(t) = N0 e−cit.

Another alternative solution , we can take

N(t)−N0 = −c0 D−1
t N(t), (2)

where the 0D
−1
t is the standard integral fractional operator. Furthermore, the fractional generalization de-

�ned by Haubold and Mathai[13] as the form for the standard kinetic equation (2)

N(t)−N0 = −cγ 0D
−γ
t N(t), (3)

where 0D
−γ
t is the Riemann-Liouville fractional integral operator expressed as

0D
−γ
t f(t) =

1

Γ(γ)

∫ t

0
(t− τ)γ−1f(τ)dτ, (t > 0,R(γ) > 0).

the equation solution (3) has been provided by Haubold and Mathai [13] in the form:

N(t) = N0

∞∑
k=0

(−1)k

Γ(γk + 1)
(ct)γk.

Besides that, Saxena and Kalla[23] stated the following fractional kinetic equation as the following form:

N(t)−N0f(t) = −cγ (0D
−γ
t N)(t), R(γ) > 0

where N(t) refers to a species' density number at each time t, N0 = N(0) is a number density which species
at a time t = 0, c is a constant and f ∈ L(0,∞).
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The Sumudu Transform, de�ned by Watugala [27] over the set ′A′ of functions as

G(τ) = S[f(t); τ ] =

∫ ∞

0
e−tf(τt)dt ; τ ∈ (−η1, η2) (4)

where A = f(t)
∣∣∃M, η1, η2 > 0,

∣∣f(t)∣∣ < Me
|t|
τj , t ∈ (−1)j × [0,∞).

In the proposed work, we �nd the results in terms of Mittag-Le�er function [21] de�ned as:

Eξ(z) =
∞∑
r=0

zr

Γ(ξr + 1)
(ξ, z ∈ C; |z| < 0,ℜ(ξ) > 0).

2. Generalized q−Bessel function

Bessel functions have signi�cant role with a wide range of issues in signi�cant �elds of mathematical
physics, such as hydrodynamics, radiophysics, acoustics, and atomic and nuclear physics, and they play an
essential role in analysing solutions of di�erential equations. They looked at various possible expansions of
Bessel functions, as well as many other aspects of Bessel functions.
The q−analogues of Bessel functions given by Jackson [15] are as follows:

J (1)
η (z; q) =

(qη+1; q)∞
(q; q)∞

(z/2)η 2ϕ1

(
0, 0
qη+1; q,−

z2

4

)
, |z| < 2

J (2)
η (z; q) =

(qη+1; q)∞
(q; q)∞

(z/2)η 0ϕ1

(
−

qη+1; q,−
qη+1z2

4

)
,

J (3)
η (z; q) =

(qη+1; q)∞
(q; q)∞

(z/2)η 1ϕ1

(
0

qη+1; q,−
qz2

4

)
.

Mourad Ismail [14] proposed the following modi�ed q−Bessel functions:

I(1)η (z; q) =
(qη+1; q)∞
(q; q)∞

∞∑
r=0

(z/2)η+2r

(q, qη+1, q)r
, |z| < 2

I(2)η (z; q) =
(qη+1; q)∞
(q; q)∞

∞∑
r=0

qr(r+η)

(q, qη+1, q)r
(z/2)η+2r,

I(3)η (z; q) =
(qη+1; q)∞
(q; q)∞

∞∑
r=0

q(
r+1
2 )

(q, qη+1, q)r
(z/2)η+2r.

It is obvious that
I(j)η (z; q) = e

−iπη
2 J (j)

η (e
iπ
2 z, q), j ∈ {1, 2, 3}.

The following q−Bessel function was introduced and investigated by Mansour and Al-Shomrani [22]:

I(4)η (z; q) =
(qη+1; q)∞
(q; q)∞

(z/2)η 0ϕ2

(
−

qη+1; q,−
q

3(η+1)
2 z2

4

)
,

which is a q-analogy of the modi�ed Bessel function.
Recently, Mahmoud [20] has de�ned the generalized q−Bessel function for ξ ∈ Z, |z| < 2 and ξ = 0 as
follows.

Jη(z, ξ; q) =
(z/2)η

(q; q)η

∞∑
r=0

(−1)r(ξ+1)q(ξr(r+η)/2)

(qη+1; q)r(q; q)r
(z2/4)r, (5)
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where
(q; q)r = Πr−1

i=1 (1− qr+1).

By substituting ξ = 0, 2, 1, (2.9) reduced to q−Bessel functions of the �rst, second and third kind respectively.
Jη(z, ξ; q) is a q−Bessel function Jη(z) and modi�ed Bessel function Iη(z).

lim
q→1

Jη((1− q)z, ξ; q) = Jη(z), ξ = 0, 2, 4, ... (6)

lim
q→1

Jη((1− q)z, ξ; q) = Iη(z), ξ = 1, 3, 5, ... (7)

3. Solution of fractional Kinetic Equations including the generalized q−Bessel function

In this section, we solve the fractional kinetic equation associated with the generalized q−Bessel function
using the method of Sumudu transform.

Theorem 3.1. Let γ > 0, d > 0, t ∈ C, ξ ∈ Z+ then the following equation:

N(t)−N0Jη(t, ξ; q) = −dγ 0D
−γ
t N(t), (8)

has a solution given by

N(t) = N0

( ∞∑
r=0

(−1)r(ξ+1)q(ξr(r+η)/2)

(qη+1; q)r(q; q)r(q; q)η

)( t
2

)2r+η
× 1

t

×Γ(2r + η + 1) Eγ,2r+η (−dγtγ).

Proof. Sumudu transform of Riemann-Liouville fractional integral operator can be presented as

S {0Dγ
t f(t); τ} = (τ)γG(τ), (9)

where G(τ) is de�ne in (4)
Now, after we apply the Sumudu transform to both sides of equation (8) and using (9) we have

S
(
N(t); τ

)
= N0 S

[
Jη(t, ξ; q)

]
− dγ S

(
0D

−γ
t N(t); τ

)
that is

N(τ) = N0

∫ ∞

0
e−t

∞∑
r=0

(−1)r(ξ+1)q(ξr(r+η)/2)

(qη+1; q)r(q; q)r(q; q)η
(τt/2)2r+ηdt− dγ(τ)γN(τ), (10)

through we interchange the integration and summation order in the equation (10), we obtain

N(τ)
[
1 + dγ(τ)γ

]
= N0

( ∞∑
r=0

(−1)r(ξ+1)q(ξr(r+η)/2)

(qη+1; q)r(q; q)r(q; q)η

)∫ ∞

0
e−t
(τt
2

)2r+η
dt,

= N0

( ∞∑
r=0

(−1)r(ξ+1)q(ξr(r+η)/2)

(qη+1; q)r(q; q)r(q; q)η

)(τ
2

)2r+η
∫ ∞

0
e−t
(
t
)2r+η

dt,

that is

N(τ)
[
1 + dγ(τ)γ

]
= N0

( ∞∑
r=0

(−1)r(ξ+1)q(ξr(r+η)/2)

(qη+1; q)r(q; q)r(q; q)η

)(τ
2

)2r+η
Γ(2r + η + 1), (11)
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equation (11) leads to

N(τ) = N0

( ∞∑
r=0

(−1)r(ξ+1)q(ξr(r+η)/2)

(qη+1; q)r(q; q)r(q; q)η

)(τ
2

)2r+η
Γ(2r + η + 1)

∞∑
s=0

(−1)s(dτ)γs. (12)

Now, we take inverse the Sumudu transform on both sides of the equation (12), and using

S−1{τγ ; t} =
tγ−1

Γ(γ)
, (R(γ) > 0), (13)

we have

S−1N(τ) = N0

( ∞∑
r=0

(−1)r(ξ+1)q(ξr(r+η)/2)

(qη+1; q)r(q; q)r(q; q)η

)(1
2

)2r+η

×Γ(2r + η + 1) S−1

( ∞∑
s=0

(−1)s(d)γs(τ)2r+η+γs

)
.

that is

N(t) = N0

( ∞∑
r=0

(−1)r(ξ+1)q(ξr(r+η)/2)

(qη+1; q)r(q; q)r(q; q)η

)(1
2

)2r+η

×Γ(2r + η + 1)

( ∞∑
s=0

(−1)s(d)γs
(t)2r+η+γs−1

Γ(2r + η + γs)

)
,

N(t) = N0

( ∞∑
r=0

(−1)r(ξ+1)q(ξr(r+η)/2)

(qη+1; q)r(q; q)r(q; q)η

)( t
2

)2r+η
× 1

t

×Γ(2r + η + 1)

( ∞∑
s=0

(−1)s
(tγdγ)s

Γ(2r + η + γs)

)
. (14)

Now, we can write eq (14) as

N(t) = N0

( ∞∑
r=0

(−1)r(ξ+1)q(ξr(r+η)/2)

(qη+1; q)r(q; q)r(q; q)η

)( t
2

)2r+η
× 1

t

×Γ(2r + η + 1) Eγ,2r+η (−dγtγ).

Corollary 3.2. let γ > 0, d > 0, t ∈ C, ξ = 0, 2, 4, ... then the following equation:

N(t)−N0 lim
q→1

Jη[(1− q)t, ξ; q] = −dγ 0D
−γ
t N(t).

OR

N(t)−N0Jη(t) = −dγ 0D
−γ
t N(t),

(where Jη(t) is de�ned by (6) has a solution given by

N(t) = N0

( ∞∑
r=0

(−1)rΓ(2r + η + 1)

Γ(r + 1)Γ(η + r + 1)

)( t
2

)2r+η
× 1

t

× Eγ,2r+η (−dγtγ).
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Corollary 3.3. let γ > 0, d > 0, t ∈ C, ξ = 1, 3, 5, ... then the following equation:

N(t)−N0 lim
q→1

Jη[(1− q)t, ξ; q] = −dγ 0D
−γ
t N(t).

OR

N(t)−N0Iη(t) = −dγ 0D
−γ
t N(t),

(where Iη(t) is de�ned by (7) has a solution given by

N(t) = N0

( ∞∑
r=0

Γ(2r + η + 1)

Γ(r + 1)Γ(η + r + 1)

)( t
2

)2r+η
× 1

t

× Eγ,2r+η (−dγtγ).

Theorem 3.4. Let γ > 0, δ > 0, d > 0, δ ̸= d, t ∈ C, ξ ∈ Z+ then the following equation:

N(t)−N0Jη(d
γtγ , ξ; q) = −δγ 0D

−γ
t N(t), (15)

has a solution given by

N(t) = N0

( ∞∑
r=0

(−1)r(ξ+1)q(ξr(r+η)/2)

(qη+1; q)r(q; q)r(q; q)η

)(dγtγ
2

)2r+η
× 1

t

×Γ(2rγ + ηγ + 1) Eγ,2rγ+ηγ (−δγtγ).

Proof. Sumudu transform of Riemann-Liouville fractional integral operator can be presented as (9) where
G(τ) is de�ne in (4)
Now, after we apply the Sumudu transform to both sides of equation (15) and using (9) we have

S
(
N(t); τ

)
= N0 S

[
Jη(d

γtγ , ξ; q)

]
− δγ S

(
0D

−γ
t N(t); τ

)
.

that is

N(τ) = N0

∫ ∞

0
e−t

∞∑
r=0

(−1)r(ξ+1)q(ξr(r+η)/2)

(qη+1; q)r(q; q)r(q; q)η
(dγ(τt)γ/2)2r+ηdt− δγ(τ)γN(τ), (16)

through we interchange the integration and summation order in the equation (16), we obtain

N(τ)
[
1 + δγ(τ)γ

]
= N0

( ∞∑
r=0

(−1)r(ξ+1)q(ξr(r+η)/2)

(qη+1; q)r(q; q)r(q; q)η

)∫ ∞

0
e−t
(dγ(τt)γ

2

)2r+η
dt,

= N0

( ∞∑
r=0

(−1)r(ξ+1)q(ξr(r+η)/2)

(qη+1; q)r(q; q)r(q; q)η

)(dγτγ
2

)2r+η
∫ ∞

0
e−t
(
t
)2rγ+ηγ

dt,

N(τ)
[
1 + δγ(τ)γ

]
= N0

( ∞∑
r=0

(−1)r(ξ+1)q(ξr(r+η)/2)

(qη+1; q)r(q; q)r(q; q)η

)(dγτγ
2

)2r+η
Γ(2rγ + ηγ + 1), (17)

equation (17) leads to

N(τ) = N0

( ∞∑
r=0

(−1)r(ξ+1)q(ξr(r+η)/2)

(qη+1; q)r(q; q)r(q; q)η

)(dγτγ
2

)2r+η
Γ(2rγ + ηγ + 1)

∞∑
s=0

(−1)s(δτ)γs. (18)
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Now, we take inverse the Sumudu transform on both sides of the equation (18), and using (13) we have

S−1N(τ) = N0

( ∞∑
r=0

(−1)r(ξ+1)q(ξr(r+η)/2)

(qη+1; q)r(q; q)r(q; q)η

)(dγ
2

)2r+η

×Γ(2rγ + ηγ + 1) S−1

( ∞∑
s=0

(−1)s(δ)γs(τ)2rγ+ηγ+γs

)
.

that is

N(t) = N0

( ∞∑
r=0

(−1)r(ξ+1)q(ξr(r+η)/2)

(qη+1; q)r(q; q)r(q; q)η

)(dγ
2

)2r+η

×Γ(2rγ + ηγ + 1)

( ∞∑
s=0

(−1)s(δ)γs
(t)2rγ+ηγ+γs−1

Γ(2rγ + ηγ + γs)

)
,

N(t) = N0

( ∞∑
r=0

(−1)r(ξ+1)q(ξr(r+η)/2)

(qη+1; q)r(q; q)r(q; q)η

)(dγtγ
2

)2r+η
× 1

t

×Γ(2rγ + ηγ + 1)

( ∞∑
s=0

(−1)s
(tγδγ)s

Γ(2rγ + ηγ + γs)

)
. (19)

Now, we can write eq (19) as

N(t) = N0

( ∞∑
r=0

(−1)r(ξ+1)q(ξr(r+η)/2)

(qη+1; q)r(q; q)r(q; q)η

)(dγtγ
2

)2r+η
× 1

t

×Γ(2rγ + ηγ + 1) Eγ,2rγ+ηγ (−δγtγ).

Corollary 3.5. let γ > 0, δ > 0, d > 0, δ ̸= d, t ∈ C, ξ = 0, 2, 4, ... then the following equation:

N(t)−N0 lim
q→1

Jη[(1− q)dγtγ , ξ; q] = −δγ 0D
−γ
t N(t).

OR

N(t)−N0Jη(d
γtγ) = −δγ 0D

−γ
t N(t),

has a solution given by

N(t) = N0

( ∞∑
r=0

(−1)rΓ(2rγ + ηγ + 1)

Γ(r + 1)Γ(η + r + 1)

)(dγtγ
2

)2r+η
× 1

t

× Eγ,2rγ+ηγ (−δγtγ).

Corollary 3.6. let γ > 0, δ > 0, d > 0, δ ̸= d, t ∈ C, ξ = 1, 3, 5, ... then the following equation:

N(t)−N0 lim
q→1

Jη[(1− q)dγtγ , ξ; q] = −δγ 0D
−γ
t N(t).
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OR

N(t)−N0Iη(d
γtγ) = −δγ 0D

−γ
t N(t),

has a solution given by

N(t) = N0

( ∞∑
r=0

Γ(2rγ + ηγ + 1)

Γ(r + 1)Γ(η + r + 1)

)(dγtγ
2

)2r+η
× 1

t

× Eγ,2rγ+ηγ (−δγtγ).

Theorem 3.7. Let γ > 0, d > 0, t ∈ C, ξ ∈ Z+ then the following equation:

N(t)−N0Jη(d
γtγ , ξ; q) = −dγ 0D

−γ
t N(t),

has a solution given by

N(t) = N0

( ∞∑
r=0

(−1)r(ξ+1)q(ξr(r+η)/2)

(qη+1; q)r(q; q)r(q; q)η

)(dγtγ
2

)2r+η
× 1

t

×Γ(2rγ + ηγ + 1) Eγ,2rγ+ηγ (−dγtγ).

Proof. Proof of Theorem 3.7 is similar to the proof of Theorems 3.1 and 3.4 so it is omitted here.

Remark 3.8. Similarly, one can develop the corollaries for the Theorem 3.7.

4. Conclusion

In this paper we have studied a new fractional generalization of the standard kinetic equation and derived
solutions for it. It is not di�cult to obtain several further analogous fractional kinetic equations and their
solutions as those exhibited here by main results.

References

[1] P. Agarwal, S.K. Ntouyas, S. Jain, M. Chand, and G. Singh, Fractional kinetic equations involving generalized k-bessel
function via sumudu transform, Alexandria Eng.J., 2017

[2] W.F.S. Ahmed, D.D. Pawar, and W.D. Patil, Fractional kinetic equations involving generalized V−function via Laplace
transform, Advances in Mathematics: Scienti�c 10 (2021), no.5, 2593−2610

[3] W.F.S. Ahmed and D.D. Pawar, Application of Sumudu Transform on Fractional Kinetic Equation Pertaining to the
Generalized k-Wright Function, Advances in Mathematics: Scienti�c Journal 9 (2020), no.10, 8091- 8103

[4] W.F.S. Ahmed, D. D. Pawar and A. Y. A. Salamooni, On the Solution of Kinetic Equation for Katugampola
Type Fractional Di�erential Equations, Journal of Dynamical Systems and Geometric Theories, 19:1, 125-134, DOI:
10.1080/1726037X.2021.1966946

[5] W.F.S. Ahmed, A. Y. A. Salamooni and D. D. Pawar, Solution of fractional Kinetic Equation For Hadamard type fractional
integral Via Mellin Transform, Gulf Journal of Mathematics Vol 12, Issue 1 (2022) 15-27

[6] M. Chand, R. Kumar and S. Bir Singh, Certain Fractional Kinetic Equations Involving Product of Generalized k-Wright
function, Bulletin of the Marathwada Mathematical Society Vol. 20, No.1, June 2019, Pages 22-32.

[7] M. Chand, et al, Certain fractional integrals and solutions of fractional kinetic equations involving the product of S-function,
Mathematical Methods in Engineering. Springer, Cham, 2019. 213-244.

[8] V.B.L. Chaurasia and D. Kumar, On the Solutions of Generalized Fractional Kinetic Equations, Adv. Studies Theor. Phys.,
Vol. 4, (2010), no. 16, 773-780.

[9] V.B.L. Chaurasia and S.C. Pandey, On the new computable solution of the generalized fractional kinetic equations involving
the generalized function for the fractional calculus and related functions, Astrophys. Space Sci. 317(3) 213-219 (2008)

[10] G.A. Dorrego and D. Kumar, A Generalization of the Kinetic Eguation using the Prabhakar - type operators, Honam
Mathematical J. 39 (2017), No. 3, pp. 401 416.



D.D. Pawar, W.F.S. Ahmed, Results in Nonlinear Anal. 5 (2022), 87�95. 95

[11] B.K. Dutta, L.K. Arora and J. Borah, On the Solution of Fractional Kinetic Equation, Gen. Math. Notes, Vol. 6, No. 1,
September 2011, pp.40-48 ISSN 2219-7184.

[12] A. Gupta and C.L. Parihar, On solutions of generalized kinetic equations of fractional order, Bol. Soc. Paran. Mat.,
32(1):181-189, (2014).

[13] H.J. Haubold, A.M. Mathai, The fractional kinetic equation and thermonuclear functions, Astrophys. Space Sci. 273 (2000)
53-63.

[14] M.E.H. Ismail and R. Zhang, q-Bessel functions and Rogers-Ramanujan type identities,(2015). Available at
arXiv:1508.06861.

[15] F.H. Jackson, The application of basic numbers to Bessel's and Legendre's functions, Proc. London Math. Soc. (2) 2 (1904),
pp. 192-220.

[16] A. Khan, et al, Existence and Hyers-Ulam stability for a nonlinear singular fractional di�erential equations with Mittag-
Le�er kernel, Chaos, Solitons and Fractals 127 (2019) 422-427.

[17] H. Khan, et al, Existence and data dependence theorems for solutions of an ABC-fractional order impulsive system, Chaos,
Solitons and Fractals 2019 www.elsevier.com/locate/chaos.

[18] A. Khan, et al, Stability analysis of nonlinear fractional di�erential equations with Caputo and Riemann-Liouville deriva-
tives, Eur. Phys. J. Plus (2018) 133: 264

[19] A. Khan, et al, Stability analysis of fractional nabla di�erence COVID-19 model, Results in Physics 22 (2021) 103888.
[20] M. Mahmoud, Generalized q-Bessel function and its properties, Adv. Di�erence Equ 1, (2013), 1-11.
[21] G.M. Mittag-Le�er, Sur la nouvelle function Eα(x)., C.R. Acad., Sci.Paris, 137 (1903), 554-558.
[22] M. Mansour and M.M. Al-Shomarani, New q-analogy of modi�ed Bessel function and the quantum algebra Eq(2), J.

Comput. Anal. Appl. 15(4) (2013), pp. 655-664.
[23] R.K. Saxena, S.L. Kalla, On the solutions of certain fractional kinetic equations, Applied Mathematics and Computation

199 (2008) 504-511.
[24] R.K. Saxena, A.M. Mathai, and H.J. Haubold, Solutions of certain fractional kinetic equations and a fractional di�usion

equation, Journal Of Mathematical Physics 51 , 103506 (2010).
[25] D.L. Suthar, S.D. Purohit, and Serkan Araci, Solution of Fractional Kinetic Equations Associated with the (p, q)−

Mathieu-Type Series, Hindawi Discrete Dynamics in Nature and Society, Volume 2020, Article ID 8645161, 7 pages
https://doi.org/10.1155/2020/8645161.

[26] S. Thabet , et al, Generalized Fractional Sturm-Liouville and Langevin Equations Involving Caputo Derivative with
Nonlocal Conditions, Progr. Fract. Di�er. Appl. 6, No. 3, 225-237 (2020).

[27] G.K. Watugala, Sumudu transform: a new integral transform to solve di�erential equations and control engineering prob-
lems, Int. J. Math. Educ. Sci. Technol., 24 (1993), 35-43.


