
PAPER DETAILS

TITLE: Developing Novel Deep Learning Models to Detect Insider Threats and Comparing the

Models from Different Perspectives

AUTHORS: Yasin Görmez,Halil Arslan,Yunus Emre Isik,Veysel Gündüz

PAGES: 31-43

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/3519780

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 1, OCAK 2024 31

Developing Novel Deep Learning Models to Detect Insider
Threats and Comparing the Models from Different

Perspectives
Araştırma Makalesi/Research Article

Yasin Görmez*1, Halil Arslan
2

, Yunus Emre Işık
1

, Veysel Gündüz
3

1Management Information System, Sivas Cumhuriyet University, Sivas, Türkiye
2Computer Engineering, Sivas Cumhuriyet University, Sivas, Türkiye 3Basis Department, Detaysoft, İstanbul, Türkiye

yasingormez@cumhuriyet.edu.tr, harslan@cumhuriyet.edu.tr, yeisik@cumhuriyet.edu.tr, veysel.gunduz@detaysoft.com

(Geliş/Received:06.11.2023; Kabul/Accepted:16.01.2024)

DOI: 10.17671/gazibtd.1386734

Abstract— Cybersecurity has become an increasingly vital concern for numerous institutions, organizations, and

governments. Many studies have been carried out to prevent external attacks, but there are not enough studies to detect

insider malicious actions. Given the damage inflicted by attacks from internal threats on corporate reputations and

financial situations, the absence of work in this field is considered a significant disadvantage. In this study, several deep

learning models using fully connected layer, convolutional neural network and long short-term memory were developed

for user and entity behavior analysis. The hyper-parameters of the models were optimized using Bayesian optimization

techniques. Experiments analysis were performed using the version 4.2 of Computer Emergency and Response Team

Dataset. Two types of features, which are personal information and numerical features, were extracted with respect to

daily activities of users. Dataset was divided with respect to user or role and experiment results showed that user based

models have better performance than the role based models. In addition to this, the models that developed using long

short-term memory were more accurate than the others. Accuracy, detection rate, f1-score, false discovery rate and

negative predictive value were used as metrics to compare model performance fairly with state-of-the-art models.

According the results of these metrics, our model obtained better scores than the state-of-the-art models and the

performance improvements were statistically significant according to the two-tailed Z test. The study is anticipated to

significantly contribute to the literature, as the deep learning approaches developed within its scope have not been

previously employed in internal threat detection. Moreover, these approaches have demonstrated superior performance

compared to previous studies.

Keywords— user and entity behavior analysis, machine learning, deep learning, insider threat, cyber security

İç Tehditlerin Tespit Edilmesi için Özgün Derin Öğrenme

Modellerinin Geliştirilmesi ve Modellerin Farklı

Perspektiflerde Karşılaştırılması

Özet— Siber güvenlik, çok sayıda kurum, kuruluş ve devlet için zamanla hayati öneme sahip bir konu haline gelmiştir.

Mevcut çalışmalar incelendiğinde, dış saldırıları önlemek için birçok çalışma yapıldığı, ancak iç tehditleri tespit etmeye

yönelik çalışmaların yeterli olmadığı kanısına varılmaktadır. İç tehditlerden gelen saldırıların kurum itibarlarına ve mali

durumlarına verdiği zararlarda göz önüne alındığında, bu alanda çalışma eksikliği büyük bir dezavantaj olarak

değerlendirilmektedir. Bu çalışmada, kullanıcı ve varlık davranış analizi için tam bağlı katman, evrişimsel sinir ağı ve

uzun kısa süreli hafıza kullanan çeşitli özgün derin öğrenme modelleri geliştirilmiştir. Modellerin hiper parametreleri

Bayesian optimizasyon teknikleri kullanılarak optimize edilerek, analizler, Computer Emergency and Response Team

Dataset veri kümesinin 4.2. sürümü kullanılarak yapılmıştır. Kullanıcıların günlük aktivitelerine göre kişisel bilgiler ve

sayısal özellikler olmak üzere iki tür özellik çıkarılmıştır. Veri seti kullanıcı veya role göre bölünmüş ve deney sonuçlarına

kullanıcı tabanlı modellerin rol tabanlı modellere göre daha iyi performansa sahip olduğunu gözlemlenmiştir. Ayrıca uzun

kısa süreli hafızayı kullanarak geliştirilen modellerin diğerlerine göre daha başarılı sonuçlar elde ettiği gözlemlenmiştir.

Model performansını literatürdeki çalışmalar ile adil bir şekilde karşılaştırmak için, başarı oranı, tespit oranı, f1 puanı,

yanlış keşif oranı ve negatif tahmin değeri metrikleri kullanılmıştır. Bu metriklerin sonuçlarına göre modelimiz,

literatürde var olan modellere göre daha iyi performans skorları elde etmiş ve iki kuyruklu Z testine göre performans

iyileştirmeleri istatistiksel olarak anlamlı bulunmuştur. Çalışma kapsamında geliştirilmiş olan derin öğrenme

yaklaşımlarının daha önce iç tehdit tespitinde kullanılmamış olmasından ve önceki çalışmaların performanslarından

yüksek bir performans elde etmesinden dolayı çalışmanın literatüre büyük bir katkı sağlayacağı kanaatine varılmıştır.

Anahtar Kelimeler— kullanıcı ve varlık davranış analizi, makine öğrenmesi, derin öğrenme, iç tehdit, siber güvenlik

32 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 1, OCAK 2024

1. INTRODUCTION

The concept of cyber security has become more and more

audible, with technology taking place in more areas of our

lives. Information is more important for institutions now

and the institutions store their data on different servers.

Although systems designed to access data from different

locations provide convenience for institutions, they cause

data security to become more complex. Some of these data

such as employee, marketing strategy, application info and

project documents have crucial importance for institutions.

In this regard, information security practices and

institutions’ strategy should be compatible and information

security applications must secure all systems of institutions

[1]. If one of the institution’s information system is

vulnerable to cyber-attacks, all systems are at risk to

attacks. Companies can experience financial losses or loss

of reputation because of the information theft. Although

most organizations use basic security precautions, the

number of security incidents is increasing. Therefore, more

resources, which are human, hardware and software,

should be allocated for security systems.

Information technology systems of institutions are very

resistant to external attacks such as DDOS, malware,

phishing and password hacking thanks to advance

applications. According to the research, more than 60% of

businesses are using technical information security

prevention practices such as antivirus program, firewall,

intrusion detection system, virtual private networks and

anti-spyware software. In addition to this, attacks from

inside and outside are increasing [2]. Although these

applications are very successful to external attacks, they

are not yet sufficient to detect internal attacks. According

to a study conducted by the Ponemon Institute in 2017 with

237 companies from 6 countries, it was concluded that

insider threats are the most expensive cyber-attack

situations and it is foreseen that insider threats will increase

in the future [3]. Insider threats are typically perpetrated by

existing employees or authorized individuals. In large

organizations, user activities and network traffic become

highly intricate. The human factor plays a more significant

role in the occurrence of internal threats than external

threats. However, not every person working in large

organizations possesses the same level of experience in

information security. Considering these complexities,

detecting internal threats emerges as a formidable

challenge for institutions.

Especially large companies use security software that

collects logs and event data generated by all users, servers,

network devices and firewalls to monitor and analyze all

security-related events in their infrastructure. This system

is called as security information and event management

(SIEM). It is possible to make user and entity behavior

analysis (UEBA), which is one of the most common

approach to detect insider threads, thanks to data collected

by SIEM systems.

UEBA aims to determine malicious actions that coming

from the insiders. These actions can be done by outsiders

who have impersonated employees or employees who

acted maliciously or negligently. Instead of detecting

malicious software or antivirus, it is desired to detect

anomalies in the behavior of users with UEBA. This

situation causes the problem to be difficult because what is

an anomaly for one user may not be an anomaly for another

user. For example, frequent review of employee

information may not be an anomaly for someone who

working in the human resources department, but it may be

considered as an anomaly for those working in other

departments. For this reason, UEBA systems are also

developed separately for situations such as department, job

description, user or role in the literature [4]. The data used

within the scope of UEBA is important for the business

processes of the companies and requires confidentiality.

Therefore, it is very difficult to find data for academic

studies. The Computer Emergency and Response Team

Dataset (CERT), which generated synthetically thanks to

support of Carnegie Mellon University, is frequently

encountered in studies in UEBA field [5], [6].

To date, supervised or unsupervised machine learning

algorithms have been used frequently for UEBA. Xiangyu

et al. combined one class support machines, recurrent

neural networks and isolation forest for UEBA and they

reached 91.60%, 93.10% and 100% accuracy, precision

and recall respectively [7]. Tuor et al. proposed long short-

term memory and deep neural networks based

unsupervised deep learning model for UEBA. The

proposed model was trained on version 6.2 of CERT

dataset and anomaly score for each sample was computed.

Experiment results show that, proposed model

outperformed the isolation forest, support vector machines

and principal component analysis models [8]. Lin et al.

applied proposed hybrid machine learning model based on

deep belief network and one-class support vector machines

on version 4.2 of CERT dataset. They firstly extracted

hidden features using deep belief network, subsequently

samples were classified using support vector machine

model. As a result of experiment analysis, they obtained

87.70%, 81.04% and 12.18% accuracy, detection rate and

false positive rate respectively [9]. Yuan et al. extracted

user behavior features with user actions and abstracted

temporal features using long short-term memory network

networks. Afterwards, they converted extracted features to

fixed size vector and they obtained 94.49% area under the

ROC curve score by training convolutional neural network

model [10]. Lo et al. detected the insider threads using

distance measurements that were Damerau–Levenshtein,

Jaccard and Cosine Distance, and they obtained 39%, 36%

and 47% detection rate. They summarized that distance

measurement techniques were better than the hidden

markov model because they were faster to train and detect

[11]. Li and Zincir-Heywood applied both supervised and

unsupervised learning models on CERT dataset using

numerical and sequential data. As a result of the

experiments, they reached 79.75% and 73.10% detection

rate with self-organizing maps and C4.5 decision tree

respectively for weekly data; 84.60% and 99.87%

detection rate with self-organizing maps and C4.5 decision

tree respectively for daily data [12]. Igbe and Saadawi

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 1, OCAK 2024 33

applied artificial immune system algorithm on CERT

dataset with 21 extracted features and they reached

83.45%, 4.60% and 89.00% true positive rates, false

positive rates and accuracy respectively [13]. Hall et al.

applied neural networks, support vector machines, naïve

bayes, decision tree, random forest and logistic regression

on version 4.2 of CERT dataset. According to the analysis

results they obtained 95.8%, 91.3%, 95.4%, 97.5%, 96.1%

and 96.5% accuracy for neural networks, naïve bayes,

support vector machines, random forest, decision tree and

logistic regression respectively and they increased

accuracy to 95.8%, 97.2%, 97.2%, 97.2%, 97.2% and

96.8% by applying boosting on these algorithm [14].

Aldairi et al. achieved 93% accuracy and 92% precision on

version 4.2 of CERT dataset using isolation forest and one-

class support vector machine [15]. Le and Zincir-Heywood

extracted features from version 4.2 and 5.2 of CERT

dataset using autoencoder, principle component analysis

and random projection and they applied logistic regression,

artificial neural networks, naïve Bayes and random forest

as a classifier. As a result of experiment analysis, they

achieved 98.33% accuracy for version 4.2 and 99.04%

accuracy for version 5.2 [16]. In other study, Le and Zincir-

Heywood achieved 92.93%, 99.54% and 97.13%

accuracies using logistic regression, random forest and

artificial neural networks respectively with user-session

based feature extraction techniques [17]. Nasser et al.

obtained 92% accuracy using gated recurrent neural

network architecture [18]. Sharma et al. proposed long

short-term memory based autoencoder model for user

behavior analytics and they achieved 90.17%, 91.03% and

9.84% accuracy, true positive rate and false positive rate

respectively [19]. Tian et al. used several deep learning

layers, which were long short-term memory, convolutional

long short-term memory and multi-layer perceptron, to

develop multi-model based system for insider thread

detection [20]. Al-Shehari and Alsowail used synthetic

minority oversampling technique to overcome imbalance

problem of CERT dataset and they obtained 0.79, 1.00,

1.00, 0.84 and 0.99 area under curve score using logistic

regression, decision tree, random forest, naïve Bayes and k

nearest neighborhood respectively [21]. Nasir et al.

achieved 90.60% accuracy, 97% precision and 94% F1

score by using long short-term memory based autoencoder

model [22]. Su et al. utilized online version of recurrent

neural networks for the version 6.2 of CERT dataset and

they achieved 95.3% f-measure [23]. Dosh et al. achieved

94.68% accuracy using three traditional machine learning

algorithms [4]. 96% accuracy was obtained by Pantelidis

et al. using autoencoder and variational autoencoder based

deep learning model [24]. Al-Mhiqani et al. achieved 97%

accuracy, 2.88% false positive rate with proposed

multilayer framework model [25]. AlSlaiman et al. et al.

applied sentiment analysis techniques on HTTP traces,

emails, and files of CERT dataset and they combined it

with different data representation. For this purpose, they

proposed a long short-term memory based deep learning

model and they achieved 0.29% false positive rate, 2.27%

false negative rate and 97% area under the curve [26]. Li et

al. integrated memory-augmented network into

autoencoder and they obtained 94.56% area under the

curve score [27].

When reviewing the literature, it becomes evident that

numerous studies have been conducted on UEBA,

resulting in the development of various deep learning

models. When examining studies focused on detecting

abnormal behavior through the analysis of individual user

patterns, it becomes apparent that some studies have

achieved an accuracy level of approximately 90% [22].

However, in studies with a success rate of around 98%, the

detection rate remained at 67% [16]. In this context, it was

concluded that enhancements should be made to the deep

learning models used for classifying insider threats.

Therefore, our study aimed to develop deep learning

models that achieve high accuracy and detection rates

while maintaining a low false discovery rate.

It is known that cyber-security is one of the main issue in

many area [28]. In this paper, malicious actions from

insiders were predicted using CERT datasets. For this

purpose, preprocessing steps were applied on CERT

dataset and samples were divided into parts based on roles

or users. After preprocessing steps, features were extracted

and several deep learning models were developed. User

behavior is time-dependent, and a malicious action is a

combination of a user's activities over time. Therefore,

Convolutional neural networks (CNN), long short-term

memory (LSTM) and fully connected layer (FLC), which

were suitable for time series problem, were used to develop

deep learning models. The hyper-parameters are one of the

most important factors for the performance of deep

learning models. Because of this reason, Bayesian

optimization technique, which is faster and more effective

than traditional techniques, were used in this study to

optimize hyper-parameters [29]–[32]. Bayesian

optimization can explore larger spaces. Moreover, unlike

grid search, which tests specific values, Bayesian

optimization allows for trying any value within the

specified range. Consequently, this method can identify

more suitable values for hyper-parameters. The

performance of the proposed models was measured using

five different metrics that are accuracy, detection rate, f1-

score, negative predictive value and false discovery rate.

The primary aim of the study is to predict internal threats

with higher accuracy compared to the existing literature,

owing to the novel approaches and models developed

within this research. First innovative aspect of our work is

the deep learning approaches used for UEBA were

developed by us specifically for this study. In addition to

this, to the best of our knowledge, it is first to use Bayesian

optimization techniques with deep learning approaches for

UEBA on CERT datasets.

The paper is organized as follows: Section II explained the

benchmark datasets, feature extraction steps and

architectures of proposed models. Section III presents the

experimental results, encompassing hyper-parameter

optimization, the performance metrics of the trained

models, a comparison with state-of-the-art methods, and a

two-tailed Z-test. Finally, the paper is concluded and future

works were explained in the section IV.

34 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 1, OCAK 2024

2. MATERIALS AND METHODS

2.1. Benchmark Dataset

In this study, the Computer Emergency and Response

Team (CERT) dataset, which is insider threat benchmark

datasets and generated synthetically, were used to train the

proposed models and to assess the performance of the

proposed model [6]. This dataset consists of device

connection, sent or received email, transferred or copied

file, http and login activities from 1000 users for 500 days.

In addition to this, CERT dataset also contains LDAP files

and detailed personal information for each user. Data

imbalance has a detrimental impact on model performance

in machine learning studies [33]. Ideal conditions for high-

performance models involve having a balanced

distribution of samples from different classes in the

training dataset. In this study, version 4.2 of the CERT

dataset was utilized to mitigate the effect of data imbalance

on model performance, as it contains the largest number of

samples related to malicious actions. Many actions in these

datasets are standard actions and also the Computer

Emergency and Response Team determined three

scenarios to define malicious action. Explanation of these

scenarios were given below. Note that, these scenarios

were taken directly from the dataset information package

[5].

• “User who did not previously use removable

drives or work after hours begins logging in

after hours, using a removable drive, and

uploading data to wikileaks.org. Leaves the

organization shortly thereafter [5].”

• “User begins surfing job websites and soliciting

employment from a competitor. Before leaving

the company, they use a thumb drive (at

markedly higher rates than their previous

activity) to steal data [5].”

• “System administrator becomes disgruntled.

Downloads a keylogger and uses a thumb drive

to transfer it to his supervisor's machine. The

next day, he uses the collected keylogs to log in

as his supervisor and send out an alarming mass

email, causing panic in the organization. He

leaves the organization immediately [5].”

In other versions of the dataset, these scenarios may

change. If an employee has a malicious action, these

actions are specified separately in each scenario. The

details about this dataset can be found on CERT

information package [5].

2.2. Feature Extraction

As mentioned earlier, the CERT datasets consisting of raw

information from 5 different activities and users’ personal

information. In order to make UEBA, this data must be

combined into a single file in a way that the machine

learning model can understand. Because of this reason,

some preprocessing steps were applied on these files then

features were extracted. Firstly, each activity type in

separate files was combined on a per-user basis and sorted

by date. After that, based on one-day activities for all users,

features were extracted. In this study a samples represent

the daily activities of users. Considering the daily

activities, two types of features, which are personal

information and numerical features, were extracted.

Personal information consists of user role, user functional

unit, user team and “o”, “c”, “e”, “a” and “n” results of

OCEAN test. The details about OCEAN test can be found

at the test information page [34]. The numerical features

were computed considering the number of daily activities

with respect to activity types. In this context, 24 values,

which are listed below, were computed for each sample.

• n_of_logOnLogOf_work_on_own_pc: Number

of logon-logoff in work on time with user own

personal computer.

• n_of_logOnLogOf_work_off_own_pc: Number

of logon-logoff in work off time with user own

personal computer.

• n_of_logOnLogOf_work_on_other_pc: Number

of logon-logoff in work on time with other user’s

personal computer.

• n_of_logOnLogOf_work_off_other_pc: Number

of logon-logoff in work off time with other

user’s personal computer.

• n_of_email_work_on_own_pc: Number of email

in work on time with user own personal

computer.

• n_of_email_work_off_own_pc: Number of

email in work off time with user own personal

computer.

• n_of_email_work_on_other_pc: Number of

email in work on time with other user’s personal

computer.

• n_of_email_work_off_other_pc: Number of

email in work off time with other user’s personal

computer.

• n_of_device_work_on_own_pc: Number of

device in work on time with user own personal

computer.

• n_of_device_work_off_own_pc: Number of

device in work off time with user own personal

computer.

• n_of_device_work_on_other_pc: Number of

device in work on time with other user’s

personal computer.

• n_of_device_work_off_other_pc: Number of

device in work off time with other user’s

personal computer.

• n_of_file_work_on_own_pc_toMedia: Number

of file copy to temporary device from company’s

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 1, OCAK 2024 35

computer in work on time with user own

personal computer.

• n_of_file_work_off_own_pc_toMedia: Number

of file copy to temporary device from company’s

computer in work off time with user own

personal computer.

• n_of_file_work_on_other_pc_toMedia: Number

of file copy to temporary device from company’s

computer in work on time with other user’s

personal computer

• n_of_file_work_off_other_pc_toMedia: Number

of file copy to temporary device from company’s

computer in work off time with other user’s

personal computer.

• n_of_file_work_on_own_pc_fromMedia:

Number of file transfer to company’s computer

from temporary device in work on time with user

own personal computer.

• n_of_file_work_off_own_pc_fromMedia:

Number of file transfer to company’s computer

from temporary device in work off time with

user own personal computer.

• n_of_file_work_on_other_pc_fromMedia:

Number of file transfer to company’s computer

from temporary device in work on time with

other user’s personal computer.

• n_of_file_work_off_other_pc_fromMedia:

Number of file transfer to company’s computer

from temporary device in work off time with

other user’s personal computer.

• n_of_http_work_on_own_pc: Number of

website activity in work on time with user own

personal computer.

• n_of_http_work_off_own_pc: Number of

website activity in work off time with user own

personal computer.

• n_of_http_work_on_other_pc: Number of

website activity in work on time with other

user’s personal computer.

• n_of_http_work_off_other_pc: Number of

website activity in work off time with other

user’s personal computer

In feature extraction stage, numerical features were

calculated considering two important situations: activity

time and computer used for activity. It is thought that the

increase in the use of computers of other employees and

the activities performed in work off time are two important

factors in determining the insider malicious actions. In

addition to this, the information of whether data is received

from the media or data is transferred to the media was also

used to compute numerical features for file activities.

Considering all these situations, four numerical features

were computed for logon, email, device and http activities

separately and eight numerical feature were computed for

file activities. Therefore, a total of 24 numerical features

were computed using five different activity records.

After feature extraction steps, each sample was labeled as

non-malicious (0) or malicious (1) using the answers file

of CERT dataset. The answers file consists of malicious

event from 5 different activities according to 3 scenarios of

CERT datasets. It is assumed that, if any sample contains

one of these malicious activities, this sample labeled with

“1”. Otherwise the sample was labeled with “0”. As a result

of preprocessing and feature extraction steps, 330452

samples, which consist of 986 malicious and 329466 non-

malicious, and 29 features were obtained from 1000 users.

Comprehensive details regarding dataset preprocessing

and feature extraction can be found in the study proposed

by Görmez et al. [35]. The code for these processes is

available on the Detaysoft GitHub page [36].

2.3. Proposed Models

In this study, two different approaches, which were role

based and user based, were used to develop proposed deep

learning models. In these approaches, small datasets were

generated by dividing the dataset according to role type or

user. In the role based models, dataset divided into 42 parts

and in the user based models, dataset divided into 1000

parts. In these approaches, models consisting of input layer

and hidden layers for each section were generated

separately, then combined in a single output layer to create

the main model. There are two reasons to use these

approach. There are cases where an action that is malicious

for one person or group is not malicious action by another

person or group. For example, a behavior that is normal for

a person working in the IT department may be malicious

for the human resources department. Therefore, training

the UEBA models separately based on user or role affects

the accuracy of model positively. Considering this

situation, the input and hidden layers of our models were

created user or role based separately. In this case, in order

to prevent overfitting situations that may occur in the

model and to generalize the model, the models created

separately on the basis of role or person were combined in

a single output layer. A total six model were proposed

using these approaches. One of them was used only for role

based, three of them were used only for user based and

remaining were used both role and user based dataset. The

architectures of these models are shown in figures below

(Figure 1-5). The models can be summarized as traditional

artificial neural network (MLP), convolutional neural

network model (CNN), long short-term memory model in

deep two (LSTM_2), long short-term memory model in

deep four (LSTM_4), combination of convolutional neural

network and long short-term memory in deep two

(CNN_LSTM_2) and combination of convolutional neural

network and long short-term memory in deep four

(CNN_LSTM_4).

36 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 1, OCAK 2024

Figure 1. Architecture of role based multi-layer

perceptron model

MLP model, which was used only for role based approach,

was shown in the figure 1. This model has contained 42

input layer, because there were 42 different roles in the

CERT dataset. A fully connected and Batch Normalization

layers were added after each input layer. In fully connected

layer, relu was used as an activation function and number

of neurons were optimized. Note that, all hidden layers are

identical which means that the number of neurons were

same in each fully connected layer. All of this layers were

concatenated at the output layer with softmax function to

generate generalized classification layer.

Figure 2. Architecture of role and user based convolution

model

Convolution model, which were used for both role or user

based approaches, was shown in the figure 2. In this model,

42 input layers were used for role based approach and 1000

input layers were used for user based approach. Note that,

two different models were generated for user and role

based approaches separately. In this model, each input

layer was followed by convolutional layer with kernel size

7, Batch Normalization layer, convolutional layer with

kernel size 1 and Batch Normalization layer in sequential

order. After that, all of these layers for each user or role

were concatenated. Later, followed by the shared fully

connected and classification layer and the model was

completed. Note that, similar to MLP model, layers created

for each user or role are identical. Hyper-parameter

optimization was applied user based and role based models

separately.

Figure 3. Architecture of role and user based long short-

term memory model at depth 2

Long short-term memory model in deep 2, which were

used for both role or user based approaches, was shown in

the figure 3. Similar to convolution model, also in this

model, 42 input layers were used for role based approach,

1000 input layers were used for user based approach and

two different models were generated for user and role

based approaches separately. In this model, each input

layer was followed by one directional long short-term

memory layer, Batch Normalization layer, one directional

long short-term memory layer and Batch Normalization

layer in sequential order. After that, all of these layers for

each user or role were concatenated. Later, followed by the

shared fully connected and classification layer and the

model was completed. Because there was a two long short-

term memory layer, this model was named as LSTM_2.

Similar to other models, layers created for each user or role

are identical and hyper-parameter optimization was

applied user based and role based models separately.

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 1, OCAK 2024 37

Figure 4. Architecture of user based long short-term

memory model at depth 2

Long short-term memory model in deep 4 was shown in

the figure 4. This model has contained 1000 input layer,

because it was only used for user based approach. The

layers of this model was exactly same with the LSTM_2

model. Because this model contained four one directional

long short-term memory layer, only difference from

LSTM_2 model was the depth of the model. For this

reason, the model was named as LSTM_4. This model was

used in this study to measure the effect of depth on the

performance of model. The depth was only measure for

LSTM model, because the initial results showed that the

best approach was user based LSTM model for UEBA.

Similar to other models, layers created for each user are

identical.

Figure 5. Architecture of user based convolution and long

short-term memory model at depth 2

Combination of convolution and long short-term memory

model in deep 2, which were used for only user based

approach, was shown in figure the figure 5. In this model,

input layers, which were generated for each user

separately, were connected in parallel to convolution and

LSTM modules. The convolution module was exactly

same with the CNN model and the LSTM module was

exactly same with the LSTM_2 model. At the final stage,

modules generated for each user separately were

concatenated and they followed by fully connected and

classification layer. Similar to other models, layers created

for each user are identical. This model was called as

CNN_LSTM_2, because LSTM_2 was used to generate

LSTM module. Combination of convolution and long

short-term memory model in deep 4, which were used for

only user based approach were also developed. This model

was similar to CNN_LSTM_2 model where only

difference was LSTM_4 model was used in order to

LSTM_2 model for LSTM modules. Similar to other

models, layers created for each user are identical. This

model was called as CNN_LSTM_4, because LSTM_4

was used to generate LSTM module.

These models were developed using keras deep learning

library of python [37]. In these models, hidden dense layer

represents the traditional artificial neural networks. In the

convolutional neural network models, two layers, which

have different kernel sizes as seven and one, were

connected each other serially. Note that, the convolution

layers in these models consisted of 1D convolution

operation. The horizontal width of the kernel was 29 that is

equal to the total number of features. The convolution

process was performed between activities performed by the

same person on previous days. In the LSTM models

return_sequences parameter was set to True. Similar to

convolution process, the LSTM layer also revealed the

time series relationship by looking at the previous day

activities of the same person. In all layers, relu was used as

activation function, glorot_uniform with seed 1 was used

as weight initializers, softmax was used as activation

function at classification layer, Adam was used as

optimizer and categorical_crossentropy was used as loss

function. During the experiment, the layer specific hyper-

parameters of model were optimized using Bayesian

optimization techniques. The details about the hyper-

parameter optimization process was given in the

experiment results section

3. EXPERIMENT RESULTS

In the first phase of the experiment, four datasets, which

are training, testing, training for optimization (trainingOpt)

and testing for optimization (testingOpt), were generated

by dividing the main dataset into parts with respect to user

and sample date. Firstly, 30% percent of the main dataset

(last samples by date for each user) selected to generate

testing dataset and training dataset was generated using the

rest of main dataset. After this phase, 25% percent of the

training dataset (similar to testing dataset, these are the last

samples by date of training dataset for each user) selected

to generate testingOpt dataset, trainingOpt dataset was

generated using the rest of training dataset. TrainingOpt

and testingOpt datasets were used for hyper-parameter

optimization phase and training dataset was used to train

model with optimum hyper-parameter and testing dataset

38 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 1, OCAK 2024

was used to assess performance of trained model with

optimum hyper-parameter.

3.1. Hyper-Parameter Optimization

Hyper-parameters are one of the most important factor that

affect the performance of the deep learning models.

Because number of hyper-parameters are high and hyper-

parameter space are large, traditional hyper-parameter

optimization techniques are not effective for deep learning

models [29]–[32]. Because of these reasons, in this study,

hyper-parameters of the models were optimized using

Bayesian optimization techniques. This method uses a

Gaussian process with two aims: Modeling the surrogate

function and optimizing the expected probability which is

based on improving the existing best solutions through new

trials. It assumes that the function values track a

multivariate Gaussian distribution. A Gaussian kernel

designates the covariance of the function values among the

parameters. In each iteration, the next value of a parameter

is selected through the acquisition function over the

Gaussian prior.

In this study, Bayesian Optimization technique was

implemented using skopt library of python language [37].

From this library, gp_minimize function was used with

hyper-parameter spaces using following parameters

settings: n_cals = 250 and acq_func = “EI”. This library

operates as a unique parameter space type. The model was

optimized according to the mean of true negative rate and

accuracy. In this context, according to the hyper-parameter

type, three different variable types, which were Real,

Categorical and Integer, were used. In these types, Real and

Integer needs a low and high value and Categorical needs

a hyper-parameter space as in grid search technique. For

this purpose, these spaces were generated by determining

the hyper-parameters to be optimized separately for each

model and hyper-parameters of each model were optimized

using trainingOpt and testingOpt datasets. Hyper-

parameter value type, space, and optimum value were

shown in table 1 for each hyper-parameter of role based

model and in table 2 for user based model. In this step,

learning rate of the model (lr), number of epoch (epoch),

batch size (batch), number of hidden unit in dense layer

(n_unit_dense), number of kernel in convolutional layer

(n_unit_conv_1) and dimension of output space of LSTM

layers (n_unit_lstm_1-4) were optimized, if model need

any of them.

Table 1. Hyper-parameters value type, space and optimum value for role based models

Model

Name

Parameter

Name
Value Type

Parameter Space Optimum

Value

MLP

lr Real low = 10-10, high = 10-1 0.059841909

epoch Integer low = 10, high = 1500 1458

batch Categorical {2,4,8,16,32,64,128,256,512,1024,2048} 1024

n_unit_dense Integer low = 20, high = 5000 4076

CNN

lr Real low = 10-10, high = 10-1 0.0000004771

epoch Integer low = 10, high = 1500 758

batch Categorical {2,4,8,16,32,64,128,256,512,1024,2048} 2048

n_unit_dense Integer low = 20, high = 5000 77

n_unit_conv_1 Integer low = 20, high = 150 101

LSTM_2

lr Real low = 10-10, high = 10-1 0.0000022047

epoch Integer low = 10, high = 1500 780

batch Categorical {2,4,8,16,32,64,128,256,512,1024,2048} 512

n_unit_dense Integer low = 20, high = 5000 2767

n_unit_lstm_1 Integer low = 10, high = 100 34

n_unit_lstm_2 Integer low = 10, high = 100 28

As evident from the table data, an extensive search was

conducted for hyper-parameters, particularly real values.

The optimum values obtained could be any value within

the specified range, unlike grid search. This is notably

observed in the lr hyper-parameter. Upon examining the

table data, it is noted that the epoch and batch parameters

generally have high values. The lr parameter varies from

model to model, but it is mostly close to the lower limit.

Table 2. Hyper-parameters value type, space and optimum value for user based models

Model Name
Parameter

Name
Value Type

Parameter Space Optimum

Value

CNN

lr Real low = 10-10, high = 10-1 0.0000005749

epoch Integer low = 10, high = 1500 1301

batch Categorical {2,4,8,16,32,64,128,256,512,1024,2048} 16

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 1, OCAK 2024 39

n_unit_dense Integer low = 20, high = 5000 602

n_unit_conv_1 Integer low = 20, high = 150 68

LSTM_2

lr Real low = 10-10, high = 10-1 0.00000000143

epoch Integer low = 10, high = 1500 167

batch Categorical {2,4,8,16,32,64,128,256,512,1024,2048} 8

n_unit_dense Integer low = 20, high = 5000 1482

n_unit_lstm_1 Integer low = 10, high = 100 51

n_unit_lstm_2 Integer low = 10, high = 100 37

LSTM_4

lr Real low = 10-10, high = 10-1 0.00012994

epoch Integer low = 10, high = 1500 399

batch Categorical {2,4,8,16,32,64,128,256,512,1024,2048} 4

n_unit_dense Integer low = 20, high = 5000 639

n_unit_lstm_1 Integer low = 10, high = 100 10

n_unit_lstm_2 Integer low = 10, high = 100 25

n_unit_lstm_3 Integer low = 10, high = 100 29

n_unit_lstm_4 Integer low = 10, high = 100 18

CNN_LSTM_2

lr Real low = 10-10, high = 10-1 0.0001284

epoch Integer low = 10, high = 1500 1065

batch Categorical {2,4,8,16,32,64,128,256,512,1024,2048} 2048

n_unit_dense Integer low = 20, high = 5000 617

n_unit_conv_1 Integer low = 20, high = 150 148

n_unit_lstm_1 Integer low = 10, high = 100 28

n_unit_lstm_2 Integer low = 10, high = 100 57

CNN_LSTM_4

lr Real low = 10-10, high = 10-1 0.00000002271

epoch Integer low = 10, high = 1500 1500

batch Categorical {2,4,8,16,32,64,128,256,512,1024,2048} 1024

n_unit_dense Integer low = 20, high = 5000 20

n_unit_conv_1 Integer low = 20, high = 150 34

n_unit_lstm_1 Integer low = 10, high = 100 16

n_unit_lstm_2 Integer low = 10, high = 100 10

n_unit_lstm_3 Integer low = 10, high = 100 14

n_unit_lstm_4 Integer low = 10, high = 100 26

Based on the results observed in the table, unlike role-

based models, hyper-parameters in user-based models may

exhibit more variation from model to model. Therefore, it

cannot be interpreted as being close to the lower or upper

limit for any hyper-parameter value. Particularly when

examining hyper-parameter distributions with real values

such as lr, the benefits of the Bayesian optimization method

become evident once again.

3.2. Performance Measures of Model Trained with

Optimum Hyper-Parameters

After hyper-parameter optimization process, models were

trained using optimum hyper-parameters with training

dataset and performance of models were assessed using

testing dataset. Two callback functions, which were

learning rate callback and early stopping callback, were

added to model to improve the performance of our model.

In the learning rate callback function, learning rate of the

model was divided by two if there is no improvement on

model loss for three epochs. Although number of epoch is

optimized, sometimes stopping the model early before

reaching the epoch number can affect the model

performance positively. Because of this reason, the training

process was stopped using early stopping callback, if there

is no improvement on model loss for six epochs. For this

purpose, testingOpt dataset was used as validation dataset

during the training phase. Accuracy is the one of the most

common performance metrics to measure the performance

of the machine learning models. However, the accuracy

score can be very misleading for the unbalanced datasets.

Because the number of malicious actions are much less

than the number of normal actions, our dataset also

considered as unbalanced datasets. Because of these

reasons accuracy, detection rate (DR), f1-score, false

discovery rate (FDR) and negative predictive value (NPV),

which were shown in table 3, were computed to assess the

performance of our model. The details about these metrics

can be found in the information page [39].

40 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 1, OCAK 2024

Table 3. Performance measures of proposed model that trained using optimum hyper-parameters

Model Name
Model

Base
Accuracy DR F1-Score FDR NPV

MLP Role 86.27% 90.67% 92.25% 13.76% 95.09%

CNN Role 83.07% 86.05% 90.37% 16.95% 89.05%

LSTM_2 Role 79.84% 89.88% 88.40% 20.24% 99.89%

CNN User 98.86% 97.17% 99.19% 1.122% 95.47%

LSTM_2 User 99.27% 98.07% 99.44% 0.724% 96.86%

LSTM_4 User 99.18% 98.89% 99.38% 0.820% 98.60%

CNN_LSTM_2 User 98.85% 98.21% 99.18% 1.144% 97.56%

CNN_LSTM_4 User 98.94% 98.25% 99.24% 1.057% 97.56%

According to these results, it is desired that all scores

except FDR are high and FDR is low. When the experiment

results are examined, it is seen that user based LSTM

model in deep two obtained the best scores for all metrics

except NPV and DR. Role based LSTM model in deep two

obtained the best score for NPV metric and user based

LSTM model in deep 4 obtained the best score for DR

metric. When these results are interpreted, it is understood

that solo LSTM models were the most successful predictor

for UEBA and the effect of increasing the depth on the

performance was negative. In addition to this, user based

models have been much more successful than role based

models. Considering all these situations, it is thought that

the most suitable model for a UEBA platform is the user

based LSTM model. The bar chart for each metric is

presented in figure 6 to better visualize the performance

between models. In this figure, bar charts were shown for

each performance metrics separately and different colors

were assigned to each model separately. The model shown

with the same color in bar charts of all performance

metrics.

Figure 6. Bar chart of each model based on performance

metrics

3.3. Comparison with the State-of-the-art

In order to better measure the contribution of the proposed

models to the literature, it has great importance to compare

them with the existing studies in the literature. Because of

this reason, our model was compared with the four models,

which were proposed by Le and Zincir-Heywood [16], Al-

Shehari and Alsowail [21], Nasir et al. [22] and Al-

Mhiqani et al. [25], from the literature. Table 4 shows the

comparison result of these models with our model with

respect to accuracy, DR, FDR or F1-score if they exist in

state-of-the-art models. For the state-of-the-art comparison

our LSTM model with deep 2 was used because it was the

model with the best performance. These state-of-the-art

models were selected because they were also developed

based on user and they trained model on version 4.2 of

CERT dataset.

Table 4. Comparison between proposed and state-of-the-

art methods on version 4.2 of CERT dataset

Model Accuracy DR
F1-

Score

FDR

Model of

Le and

Zincir-

Heywood

[16]

98.33% 69.51%

-------- 0.350%

Model of

Al-

Shehari

and

Alsowail

[21]

-------- --------

99.00% --------

Model of

Nasir et.

al. [22]

90.00% --------

94.00% --------

Model of

Al-

Mhiqani

et al. [25]

97.00%

84.00% 2.88%

Proposed

Model
99.27% 98.07%

99.44% 0.724%

Based on these results, our model outperformed the state-

of-the-art model for accuracy, DR and F1-score metrics.

However, autoencoder based model proposed by Le and

Zincir-Heywood [16] were obtained better FDR score than

our model. Considering the proportion taken for FDR, it is

seen that both models achieve very low results.

Considering that the proposed model achieves much better

results especially for the DR score, it is thought that our

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 1, OCAK 2024 41

model is better than model proposed by Le and Zincir-

Heywood [16] according to the average metric results.

3.4. Two-tailed Z-test

Based on the experiment results, it is concluded that user

based models have better results than the role based models

and the proposed model out-performed the state-of-the-art.

In this phase, it was checked whether these improvements

were significant. For this purpose, two-tailed z test was

applied on our experiment results and also our experiment

results were compared with the state-of-the-art based on

two-tailed z test score. The details about two-tailed z test

can be found at information page [40]. Table 5 shows the

p values between the best model (LSTM model in deep

two) and the other model and table 6 shows the p values

between LSTM_2 model and state-of-the-art based on

comparison metrics. A p-value of less than 0.01 indicates

that the proposed model is 99% reliable, according to the

two-tailed Z test, and statistically outperforms the models

in the literature. Thus, a statistical comparison of the model

with the literature can be made by examining the results in

Table 6.

Table 5. P-values between LSTM_2 model and the other model calculated with two-tailed Z test.

Model Name Model Base
P-Value of

Accuracy

P-Value of

DR

P-Value of

F1-Score

P-Value of

FDR

P-Value of

NPV

MLP Role 0. 00001 0. 00001 0. 00001 0. 00001 0. 00001

CNN Role 0. 00001 0. 00001 0. 00001 0. 00001 0. 00001

LSTM_2 Role 0. 00001 0. 00001 0. 00001 0. 00001 0. 00001

CNN User 0. 00001 0. 00001 0. 00001 0. 00001 0. 00001

LSTM_4 User 0. 00001 0. 00001 0. 00001 0. 00001 0. 00001

CNN_LSTM_2 User 0. 00001 0. 00001 0. 00001 0. 00001 0. 00001

CNN_LSTM_4 User 0. 00001 0. 00001 0. 00001 0. 00001 0. 00001

Table 6. P-values between LSTM_2 model and state-of-the-art model with two-tailed Z test.

Model Accuracy DR F1-Score FDR

Model of Le and Zincir-Heywood [16] 0. 00001 0. 00001 -------- 0. 00001

Model of Al-Shehari and Alsowail [21] -------- -------- 0. 00001 --------

Model of Nasir et. al. [22] 0. 00001 -------- 0. 00001 --------

Model of Al-Mhiqani et al. [25] 0. 00001 -------- 0. 00001 0. 00001

Considering these results, it is seen that all improvements

are statistically significant according to the two-tailed Z

test at p < 0.01. The bold p-values represent the scores

where the LSTM_2 model was worse than the related

model. According to the results of two-tailed Z test, the

model proposed by Le and Zincir-Heywood obtained

statistically significant better results than our model for

false discovery rate results. However, when models are

considered based on all other metrics, our model seems to

be superior. Especially in the detection rate score, it is

observed that our model is significantly better than the

model of Le and Zincir-Heywood [16].

4. CONCLUSION AND FUTURE WORK

In this study, several deep learning models, which were

developed using fully connected layer, convolutional

neural network and long short-term memory network, were

proposed for user and entity behavior analysis. Our models

used two different approaches: role based and user based.

In user based models, the dataset is split so that each piece

contains the data of one user. In role based approach, users

with the same role were included in the same partition.

Experiment analysis showed that user based models are

better than the role based models.

According to the analysis results, the MLP model achieved

the highest accuracy among role-based models, with a rate

of 86.27%. In addition, its DR, F1-Score, FDR, and NPV

scores were measured at 90.67%, 92.25%, 13.76%, and

95.09%, respectively. Surprisingly, the accuracy of this

model was even lower than that of the CNN_LSTM_2

model, which has the lowest accuracy among user-based

models. The CNN_LSTM_2 model obtained values of

98.21%, 99.18%, 1.144%, and 97.56% for DR, F1-Score,

FDR, and NPV scores, respectively, outperforming the

role-based MLP model in all metric scores. Considering

these results, it is concluded that developing an insider

threat system for an institution using a user-based approach

is more effective in terms of performance metric scores.

However, it's worth noting that user-based models may

face challenges in corporate settings due to potential

changes in an individual's authority or department. Such

changes can lead to shifts in employee activities,

potentially affecting the model's predictive accuracy. To

address this issue, fine-tuning of the model is necessary,

which may result in a decrease in model efficiency. In light

of these considerations, it is concluded that role-based

models are more compatible with corporate organizations.

Therefore, future studies should focus on improving the

accuracy of role-based models.

42 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 1, OCAK 2024

The best proposed model, which uses two serial connected

LSTM layers, outperformed the state-of-the-art models and

the improvement was statistically significant according to

the two-tailed Z test at p < 0.01. Although our model

obtained 99.27% accuracy on version 4.2 of CERT dataset,

it is thought that the model should be improved in other

metric scores such as negative predictive value and

detection rate. Because of this reason, in the future work,

more complex deep learning models will be developed

using different approaches such as user, role, department

and team based. In addition to this, several feature

selection techniques will be applied on CERT dataset. In

this way, best deep learning structures for UEBA and the

features that can best identify malicious action will be

determined. A new UEBA approach will be proposed using

this information and a model will be proposed using the

data of our institution operating in the field of technology.

For this purpose, daily activities of employees will be

collected with a SIEM application used in our company. In

line with the determined scenarios, these activities will be

labeled and a specific dataset will be created for our

institution. The proposed deep learning models will be also

applied for this dataset and the results will be compared

with the performance measures of CERT dataset. After all

these analyzes, we are planning to integrate proposed

model to our SIEM systems to analyze real time

performance of UEBA systems

KAYNAKLAR (REFERENCES)

[1] N. R. Mosteanu, “Artificial Intelligence and Cyber Security – Face

To Face With Cyber Attack – A Maltese Case Of Risk

Management Approach”, Ecoforum Journal, 9(2), 2020.

[2] D. Ghelani, Cyber Security, Cyber Threats, Implications and

Future Perspectives: A Review, Authorea Preprints, 2022

[3] Y. Hashem, H. Takabi, R. Dantu, and R. Nielsen, “A Multi-Modal

Neuro-Physiological Study of Malicious Insider Threats”,

International Workshop on Managing Insider Security

Threats, New York, NY, USA, 33-44, October 2017.

[4] M. Dosh, “Detecting insider threat within institutions using CERT

dataset and different ML techniques”, Periodicals of Engineering

and Natural Sciences, 9(2), 873-884, 2021.

[5] Insider Threat Test Dataset,

https://kilthub.cmu.edu/articles/dataset/Insider_Threat_Test_Data

set/12841247/1, 21.01.2024.

[6] W. R. Claycomb and A. Nicoll, “Insider Threats to Cloud

Computing: Directions for New Research Challenges”, 36th

Annual Computer Software and Applications Conference,

İzmir, Turkey, 387,394, July 2012.

[7] X. Xiangyu et al., “Method and System for Detecting Anomalous

User Behaviors: An Ensemble Approach”, 30th International

Conference on Software Engineering and Knowledge

Engineering, San Francisco, California, USA , 263-307, July

2018.

[8] A. Tuor, S. Kaplan, B. Hutchinson, N. Nichols, and S. Robinson,

Deep Learning for Unsupervised Insider Threat Detection in

Structured Cybersecurity Data Streams, arXiv, 2017.

[9] L. Lin, S. Zhong, C. Jia, and K. Chen, “Insider Threat Detection

Based on Deep Belief Network Feature Representation”,

International Conference on Green Informatics, Fuzhou, China,

54-59, August 2017.

[10] F. Yuan, Y. Cao, Y. Shang, Y. Liu, J. Tan, and B. Fang, “Insider

Threat Detection with Deep Neural Network”, Computational

Science,Wuzi, China, 43-54, 2018.

[11] O. Lo, W. J. Buchanan, P. Griffiths, and R. Macfarlane, “Distance

Measurement Methods for Improved Insider Threat Detection”,

Security and Communication Networks, 2018(e5906368), 1-18,

2018.

[12] D. C. Le and A. N. Zincir-Heywood, “Evaluating Insider Threat

Detection Workflow Using Supervised and Unsupervised

Learning”, IEEE Security and Privacy Workshops, San

Francisco, CA, USA, 270-275, May 2018.

[13] O. Igbe and T. Saadawi, “Insider Threat Detection using an

Artificial Immune system Algorithm”, 9th IEEE Annual

Ubiquitous Computing, Electronics & Mobile Communication

Conference, New York, USA, 297-302, November 2018.

[14] A. J. Hall, N. Pitropakis, W. J. Buchanan, and N. Moradpoor,

“Predicting Malicious Insider Threat Scenarios Using

Organizational Data and a Heterogeneous Stack-Classifier”, IEEE

International Conference on Big Data, Seattle, WA, USA, 5034-

5039, December 2018.

[15] M. Aldairi, L. Karimi, and J. Joshi, “A Trust Aware Unsupervised

Learning Approach for Insider Threat Detection”, IEEE 20th

International Conference on Information Reuse and

Integration for Data Science, Los Angeles, California, USA, 89-

98, July 2019.

[16] D. C. Le and N. Zincir-Heywood, “Exploring anomalous behaviour

detection and classification for insider threat identification”,

International Journal of Network Management, 31(4), 2021.

[17] D. C. Le and A. Nur Zincir-Heywood, “Machine learning based

Insider Threat Modelling and Detection”, IFIP/IEEE Symposium

on Integrated Network and Service Management, Washington DC,

USA, 1-6, April.

[18] M. Nasser Al-mhiqani, R. Ahmad, Z. Zainal Abidin, W. Yassin, A.

Hassan, and A. Natasha Mohammad, “New insider threat detection

method based on recurrent neural networks”, Indonesian Journal

of Electrical Engineering and Computer Science, 17(3), 1474,

2020.

[19] B. Sharma, P. Pokharel, and B. Joshi, “User Behavior Analytics for

Anomaly Detection Using LSTM Autoencoder - Insider Threat

Detection”, 11th International Conference on Advances in

Information Technology, New York, USA, 1-9, July 2020.

[20] Z. Tian, C. Luo, H. Lu, S. Su, Y. Sun, and M. Zhang, “User and

Entity Behavior Analysis under Urban Big Data”, ACM

Transactions on Data Science, 1(3), 1-16, 2020.

[21] T. Al-Shehari and R. A. Alsowail, “An Insider Data Leakage

Detection Using One-Hot Encoding, Synthetic Minority

Oversampling and Machine Learning Techniques”, Entropy,

23(10), no. 10, 2021.

[22] R. Nasir, M. Afzal, R. Latif, and W. Iqbal, “Behavioral Based

Insider Threat Detection Using Deep Learning”, IEEE Access,

9(1), 143266–143274, 2021.

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 1, OCAK 2024 43

[23] D. Sun, M. Liu, M. Li, Z. Shi, P. Liu, and X. Wang, “DeepMIT: A

Novel Malicious Insider Threat Detection Framework based on

Recurrent Neural Network”, 24th International Conference on

Computer Supported Cooperative Work in Design, Dalian,

China, 335-341, May 2021.

[24] E. Pantelidis, G. Bendiab, S. Shiaeles, and N. Kolokotronis,

“Insider Threat Detection using Deep Autoencoder and Variational

Autoencoder Neural Networks”, IEEE International Conference

on Cyber Security and Resilience, Rhodes, Greece, 129-134, July

2021.

[25] M. N. Al-Mhiqani et al., “A new intelligent multilayer framework

for insider threat detection”, Computers & Electrical Engineering,

97(1), 107597, January 2022.

[26] M. AlSlaiman, M. I. Salman, M. M. Saleh, and B. Wang,

“Enhancing false negative and positive rates for efficient insider

threat detection”, Computers & Security, 126(1), 103066, March

2023.

[27] D. Li, L. Yang, H. Zhang, X. Wang, and L. Ma, “Memory-

Augmented Insider Threat Detection with Temporal-Spatial

Fusion”, Security and Communication Networks, 2022(1),

e6418420, 2022.

[27] T. Karayel, A. Akbıyık, “A Global Perspective of Cybersecurity

Research: Publication Trends and Research Directions”, Journal of

Information Technologies, 16(3), 221 – 235, 2023.

[29] Y. Gormez, Z. Aydin, R. Karademir, and V. C. Gungor, “A deep

learning approach with Bayesian optimization and ensemble

classifiers for detecting denial of service attacks”, International

Journal of Communication Systems, 33(11), e4401, 2020.

[30] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian

Optimization of Machine Learning Algorithms”, Advances in

Neural Information Processing Systems, Nevada, USA, 2012.

[31] A. Salama, A. E. Hassanien, and A. Fahmy, “Sheep Identification

Using a Hybrid Deep Learning and Bayesian Optimization

Approach”, IEEE Access, 7(1), 31681–31687, 2019.

[32] J. Snoek et al., “Scalable Bayesian Optimization Using Deep

Neural Networks,” 32nd International Conference on Machine

Learning, Lille, France, 2171-2180, Jun 2015.

[33] H. Kaur, H. S. Pannu, and A. K. Malhi, “A Systematic Review on

Imbalanced Data Challenges in Machine Learning: Applications

and Solutions”, ACM Computing Survey, 52(4), 1-36, August

2019.

[34] Big Five personality traits:

https://en.wikipedia.org/w/index.php?title=Big_Five_personality_

traits&oldid=1114671408, 21.01.2024.

[35] Y. Görmez, H. Arslan, Y. E. Işik, and İ. E. Dadaş, “A User and

Entity Behavior Analysis for SIEM Systems: Preprocessing of The

Computer Emergency and Response Team Dataset,” Journal Soft

Computing, 4(1), 2023.

[36] Arge-Preprocessing-CERT: https://github.com/Detaysoft/Arge-

Preprocessing-CERT, 21.01.2024

[37] Keras: the Python deep learning API: https://keras.io/, 21.01.2024.

[38] scikit-optimize:https://scikit-optimize.github.io/stable/,

21.01.2024.

[39] Precision and recall:

https://en.wikipedia.org/w/index.php?title=Precision_and_recall&

oldid=1122267443, 21.01.2024.

[40] Z Score Calculator for 2 Poulation Proportions,

https://www.socscistatistics.com/tests/ztest/default2.aspx,

21.01.2024.

