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Abstract— Cybersecurity has become an increasingly vital concern for numerous institutions, organizations, and 

governments. Many studies have been carried out to prevent external attacks, but there are not enough studies to detect 

insider malicious actions. Given the damage inflicted by attacks from internal threats on corporate reputations and 

financial situations, the absence of work in this field is considered a significant disadvantage. In this study, several deep 

learning models using fully connected layer, convolutional neural network and long short-term memory were developed 

for user and entity behavior analysis. The hyper-parameters of the models were optimized using Bayesian optimization 

techniques. Experiments analysis were performed using the version 4.2 of Computer Emergency and Response Team 

Dataset. Two types of features, which are personal information and numerical features, were extracted with respect to 

daily activities of users. Dataset was divided with respect to user or role and experiment results showed that user based 

models have better performance than the role based models. In addition to this, the models that developed using long 

short-term memory were more accurate than the others. Accuracy, detection rate, f1-score, false discovery rate and 

negative predictive value were used as metrics to compare model performance fairly with state-of-the-art models. 

According the results of these metrics, our model obtained better scores than the state-of-the-art models and the 

performance improvements were statistically significant according to the two-tailed Z test. The study is anticipated to 

significantly contribute to the literature, as the deep learning approaches developed within its scope have not been 

previously employed in internal threat detection. Moreover, these approaches have demonstrated superior performance 

compared to previous studies.  

Keywords— user and entity behavior analysis, machine learning, deep learning, insider threat, cyber security 

İç Tehditlerin Tespit Edilmesi için Özgün Derin Öğrenme 

Modellerinin Geliştirilmesi ve Modellerin Farklı 

Perspektiflerde Karşılaştırılması 
 

Özet— Siber güvenlik, çok sayıda kurum, kuruluş ve devlet için zamanla hayati öneme sahip bir konu haline gelmiştir. 

Mevcut çalışmalar incelendiğinde, dış saldırıları önlemek için birçok çalışma yapıldığı, ancak iç tehditleri tespit etmeye 

yönelik çalışmaların yeterli olmadığı kanısına varılmaktadır. İç tehditlerden gelen saldırıların kurum itibarlarına ve mali 

durumlarına verdiği zararlarda göz önüne alındığında, bu alanda çalışma eksikliği büyük bir dezavantaj olarak 

değerlendirilmektedir. Bu çalışmada, kullanıcı ve varlık davranış analizi için tam bağlı katman, evrişimsel sinir ağı ve 

uzun kısa süreli hafıza kullanan çeşitli özgün derin öğrenme modelleri geliştirilmiştir. Modellerin hiper parametreleri 

Bayesian optimizasyon teknikleri kullanılarak optimize edilerek, analizler, Computer Emergency and Response Team 

Dataset veri kümesinin 4.2. sürümü kullanılarak yapılmıştır. Kullanıcıların günlük aktivitelerine göre kişisel bilgiler ve 

sayısal özellikler olmak üzere iki tür özellik çıkarılmıştır. Veri seti kullanıcı veya role göre bölünmüş ve deney sonuçlarına 

kullanıcı tabanlı modellerin rol tabanlı modellere göre daha iyi performansa sahip olduğunu gözlemlenmiştir. Ayrıca uzun 

kısa süreli hafızayı kullanarak geliştirilen modellerin diğerlerine göre daha başarılı sonuçlar elde ettiği gözlemlenmiştir. 

Model performansını literatürdeki çalışmalar ile adil bir şekilde karşılaştırmak için, başarı oranı, tespit oranı, f1 puanı, 

yanlış keşif oranı ve negatif tahmin değeri metrikleri kullanılmıştır. Bu metriklerin sonuçlarına göre modelimiz, 

literatürde var olan modellere göre daha iyi performans skorları elde etmiş ve iki kuyruklu Z testine göre performans 

iyileştirmeleri istatistiksel olarak anlamlı bulunmuştur. Çalışma kapsamında geliştirilmiş olan derin öğrenme 

yaklaşımlarının daha önce iç tehdit tespitinde kullanılmamış olmasından ve önceki çalışmaların performanslarından 

yüksek bir performans elde etmesinden dolayı çalışmanın literatüre büyük bir katkı sağlayacağı kanaatine varılmıştır. 

Anahtar Kelimeler— kullanıcı ve varlık davranış analizi, makine öğrenmesi, derin öğrenme, iç tehdit, siber güvenlik 
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1. INTRODUCTION 

The concept of cyber security has become more and more 

audible, with technology taking place in more areas of our 

lives. Information is more important for institutions now 

and the institutions store their data on different servers. 

Although systems designed to access data from different 

locations provide convenience for institutions, they cause 

data security to become more complex. Some of these data 

such as employee, marketing strategy, application info and 

project documents have crucial importance for institutions. 

In this regard, information security practices and 

institutions’ strategy should be compatible and information 

security applications must secure all systems of institutions 

[1]. If one of the institution’s information system is 

vulnerable to cyber-attacks, all systems are at risk to 

attacks. Companies can experience financial losses or loss 

of reputation because of the information theft. Although 

most organizations use basic security precautions, the 

number of security incidents is increasing. Therefore, more 

resources, which are human, hardware and software, 

should be allocated for security systems. 

Information technology systems of institutions are very 

resistant to external attacks such as DDOS, malware, 

phishing and password hacking thanks to advance 

applications. According to the research, more than 60% of 

businesses are using technical information security 

prevention practices such as antivirus program, firewall, 

intrusion detection system, virtual private networks and 

anti-spyware software. In addition to this, attacks from 

inside and outside are increasing [2]. Although these 

applications are very successful to external attacks, they 

are not yet sufficient to detect internal attacks. According 

to a study conducted by the Ponemon Institute in 2017 with 

237 companies from 6 countries, it was concluded that 

insider threats are the most expensive cyber-attack 

situations and it is foreseen that insider threats will increase 

in the future [3]. Insider threats are typically perpetrated by 

existing employees or authorized individuals. In large 

organizations, user activities and network traffic become 

highly intricate. The human factor plays a more significant 

role in the occurrence of internal threats than external 

threats. However, not every person working in large 

organizations possesses the same level of experience in 

information security. Considering these complexities, 

detecting internal threats emerges as a formidable 

challenge for institutions. 

Especially large companies use security software that 

collects logs and event data generated by all users, servers, 

network devices and firewalls to monitor and analyze all 

security-related events in their infrastructure. This system 

is called as security information and event management 

(SIEM). It is possible to make user and entity behavior 

analysis (UEBA), which is one of the most common 

approach to detect insider threads, thanks to data collected 

by SIEM systems.  

UEBA aims to determine malicious actions that coming 

from the insiders. These actions can be done by outsiders 

who have impersonated employees or employees who 

acted maliciously or negligently. Instead of detecting 

malicious software or antivirus, it is desired to detect 

anomalies in the behavior of users with UEBA. This 

situation causes the problem to be difficult because what is 

an anomaly for one user may not be an anomaly for another 

user. For example, frequent review of employee 

information may not be an anomaly for someone who 

working in the human resources department, but it may be 

considered as an anomaly for those working in other 

departments. For this reason, UEBA systems are also 

developed separately for situations such as department, job 

description, user or role in the literature [4]. The data used 

within the scope of UEBA is important for the business 

processes of the companies and requires confidentiality. 

Therefore, it is very difficult to find data for academic 

studies. The Computer Emergency and Response Team 

Dataset (CERT), which generated synthetically thanks to 

support of Carnegie Mellon University, is frequently 

encountered in studies in UEBA field [5], [6]. 

To date, supervised or unsupervised machine learning 

algorithms have been used frequently for UEBA. Xiangyu 

et al. combined one class support machines, recurrent 

neural networks and isolation forest for UEBA and they 

reached 91.60%, 93.10% and 100% accuracy, precision 

and recall respectively [7]. Tuor et al. proposed long short-

term memory and deep neural networks based 

unsupervised deep learning model for UEBA. The 

proposed model was trained on version 6.2 of CERT 

dataset and anomaly score for each sample was computed. 

Experiment results show that, proposed model 

outperformed the isolation forest, support vector machines 

and principal component analysis models [8]. Lin et al. 

applied proposed hybrid machine learning model based on 

deep belief network and one-class support vector machines 

on version 4.2 of CERT dataset. They firstly extracted 

hidden features using deep belief network, subsequently 

samples were classified using support vector machine 

model. As a result of experiment analysis, they obtained 

87.70%, 81.04% and 12.18% accuracy, detection rate and 

false positive rate respectively [9]. Yuan et al. extracted 

user behavior features with user actions and abstracted 

temporal features using long short-term memory network 

networks. Afterwards, they converted extracted features to 

fixed size vector and they obtained 94.49% area under the 

ROC curve score by training convolutional neural network 

model [10]. Lo et al. detected the insider threads using 

distance measurements that were Damerau–Levenshtein, 

Jaccard and Cosine Distance, and they obtained 39%, 36% 

and 47% detection rate. They summarized that distance 

measurement techniques were better than the hidden 

markov model because they were faster to train and detect 

[11]. Li and Zincir-Heywood applied both supervised and 

unsupervised learning models on CERT dataset using 

numerical and sequential data. As a result of the 

experiments, they reached 79.75% and 73.10% detection 

rate with self-organizing maps and C4.5 decision tree 

respectively for weekly data; 84.60% and 99.87% 

detection rate with self-organizing maps and C4.5 decision 

tree respectively for daily data [12]. Igbe and Saadawi 
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applied artificial immune system algorithm on CERT 

dataset with 21 extracted features and they reached 

83.45%, 4.60% and 89.00% true positive rates, false 

positive rates and accuracy respectively [13]. Hall et al. 

applied neural networks, support vector machines, naïve 

bayes, decision tree, random forest and logistic regression 

on version 4.2 of CERT dataset. According to the analysis 

results they obtained 95.8%, 91.3%, 95.4%, 97.5%, 96.1% 

and 96.5% accuracy for neural networks, naïve bayes, 

support vector machines, random forest, decision tree and 

logistic regression respectively and they increased 

accuracy to 95.8%, 97.2%, 97.2%, 97.2%, 97.2% and 

96.8% by applying boosting on these algorithm [14]. 

Aldairi et al. achieved 93% accuracy and 92% precision on 

version 4.2 of CERT dataset using isolation forest and one-

class support vector machine [15]. Le and Zincir-Heywood 

extracted features from version 4.2 and 5.2 of CERT 

dataset using autoencoder, principle component analysis 

and random projection and they applied logistic regression, 

artificial neural networks, naïve Bayes and random forest 

as a classifier. As a result of experiment analysis, they 

achieved 98.33% accuracy for version 4.2 and 99.04% 

accuracy for version 5.2 [16]. In other study, Le and Zincir-

Heywood achieved 92.93%, 99.54% and 97.13% 

accuracies using logistic regression, random forest and 

artificial neural networks respectively with user-session 

based feature extraction techniques [17]. Nasser et al. 

obtained 92% accuracy using gated recurrent neural 

network architecture [18]. Sharma et al. proposed long 

short-term memory based autoencoder model for user 

behavior analytics and they achieved 90.17%, 91.03% and 

9.84% accuracy, true positive rate and false positive rate 

respectively [19]. Tian et al. used several deep learning 

layers, which were long short-term memory, convolutional 

long short-term memory and multi-layer perceptron, to 

develop multi-model based system for insider thread 

detection [20]. Al-Shehari and Alsowail used synthetic 

minority oversampling technique to overcome imbalance 

problem of CERT dataset and they obtained 0.79, 1.00, 

1.00, 0.84 and 0.99 area under curve score using logistic 

regression, decision tree, random forest, naïve Bayes and k 

nearest neighborhood respectively [21]. Nasir et al. 

achieved 90.60% accuracy, 97% precision and 94% F1 

score by using long short-term memory based autoencoder 

model [22]. Su et al. utilized online version of recurrent 

neural networks for the version 6.2 of CERT dataset and 

they achieved 95.3% f-measure [23]. Dosh et al. achieved 

94.68% accuracy using three traditional machine learning 

algorithms [4]. 96% accuracy was obtained by Pantelidis 

et al. using autoencoder and variational autoencoder based 

deep learning model [24]. Al-Mhiqani et al. achieved 97% 

accuracy, 2.88% false positive rate with proposed 

multilayer framework model [25]. AlSlaiman et al. et al. 

applied sentiment analysis techniques on HTTP traces, 

emails, and files of CERT dataset and they combined it 

with different data representation. For this purpose, they 

proposed a long short-term memory based deep learning 

model and they achieved 0.29% false positive rate, 2.27% 

false negative rate and 97% area under the curve [26]. Li et 

al. integrated memory-augmented network into 

autoencoder and they obtained 94.56% area under the 

curve score [27].  

When reviewing the literature, it becomes evident that 

numerous studies have been conducted on UEBA, 

resulting in the development of various deep learning 

models. When examining studies focused on detecting 

abnormal behavior through the analysis of individual user 

patterns, it becomes apparent that some studies have 

achieved an accuracy level of approximately 90% [22]. 

However, in studies with a success rate of around 98%, the 

detection rate remained at 67% [16]. In this context, it was 

concluded that enhancements should be made to the deep 

learning models used for classifying insider threats. 

Therefore, our study aimed to develop deep learning 

models that achieve high accuracy and detection rates 

while maintaining a low false discovery rate. 

It is known that cyber-security is one of the main issue in 

many area [28]. In this paper, malicious actions from 

insiders were predicted using CERT datasets. For this 

purpose, preprocessing steps were applied on CERT 

dataset and samples were divided into parts based on roles 

or users. After preprocessing steps, features were extracted 

and several deep learning models were developed. User 

behavior is time-dependent, and a malicious action is a 

combination of a user's activities over time. Therefore, 

Convolutional neural networks (CNN), long short-term 

memory (LSTM) and fully connected layer (FLC), which 

were suitable for time series problem, were used to develop 

deep learning models.  The hyper-parameters are one of the 

most important factors for the performance of deep 

learning models. Because of this reason, Bayesian 

optimization technique, which is faster and more effective 

than traditional techniques, were used in this study to 

optimize hyper-parameters [29]–[32]. Bayesian 

optimization can explore larger spaces. Moreover, unlike 

grid search, which tests specific values, Bayesian 

optimization allows for trying any value within the 

specified range. Consequently, this method can identify 

more suitable values for hyper-parameters. The 

performance of the proposed models was measured using 

five different metrics that are accuracy, detection rate, f1-

score, negative predictive value and false discovery rate.  

The primary aim of the study is to predict internal threats 

with higher accuracy compared to the existing literature, 

owing to the novel approaches and models developed 

within this research. First innovative aspect of our work is 

the deep learning approaches used for UEBA were 

developed by us specifically for this study. In addition to 

this, to the best of our knowledge, it is first to use Bayesian 

optimization techniques with deep learning approaches for 

UEBA on CERT datasets.  

The paper is organized as follows: Section II explained the 

benchmark datasets, feature extraction steps and 

architectures of proposed models. Section III presents the 

experimental results, encompassing hyper-parameter 

optimization, the performance metrics of the trained 

models, a comparison with state-of-the-art methods, and a 

two-tailed Z-test. Finally, the paper is concluded and future 

works were explained in the section IV.  
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2. MATERIALS AND METHODS 

2.1. Benchmark Dataset  

In this study, the Computer Emergency and Response 

Team (CERT) dataset, which is insider threat benchmark 

datasets and generated synthetically, were used to train the 

proposed models and to assess the performance of the 

proposed model [6]. This dataset consists of device 

connection, sent or received email, transferred or copied 

file, http and login activities from 1000 users for 500 days. 

In addition to this, CERT dataset also contains LDAP files 

and detailed personal information for each user. Data 

imbalance has a detrimental impact on model performance 

in machine learning studies [33]. Ideal conditions for high-

performance models involve having a balanced 

distribution of samples from different classes in the 

training dataset.  In this study, version 4.2 of the CERT 

dataset was utilized to mitigate the effect of data imbalance 

on model performance, as it contains the largest number of 

samples related to malicious actions. Many actions in these 

datasets are standard actions and also the Computer 

Emergency and Response Team determined three 

scenarios to define malicious action. Explanation of these 

scenarios were given below. Note that, these scenarios 

were taken directly from the dataset information package 

[5].  

• “User who did not previously use removable 

drives or work after hours begins logging in 

after hours, using a removable drive, and 

uploading data to wikileaks.org. Leaves the 

organization shortly thereafter [5].” 

• “User begins surfing job websites and soliciting 

employment from a competitor. Before leaving 

the company, they use a thumb drive (at 

markedly higher rates than their previous 

activity) to steal data [5].” 

• “System administrator becomes disgruntled. 

Downloads a keylogger and uses a thumb drive 

to transfer it to his supervisor's machine. The 

next day, he uses the collected keylogs to log in 

as his supervisor and send out an alarming mass 

email, causing panic in the organization. He 

leaves the organization immediately [5].” 

In other versions of the dataset, these scenarios may 

change. If an employee has a malicious action, these 

actions are specified separately in each scenario. The 

details about this dataset can be found on CERT 

information package [5]. 

2.2. Feature Extraction  

As mentioned earlier, the CERT datasets consisting of raw 

information from 5 different activities and users’ personal 

information. In order to make UEBA, this data must be 

combined into a single file in a way that the machine 

learning model can understand. Because of this reason, 

some preprocessing steps were applied on these files then 

features were extracted. Firstly, each activity type in 

separate files was combined on a per-user basis and sorted 

by date. After that, based on one-day activities for all users, 

features were extracted. In this study a samples represent 

the daily activities of users. Considering the daily 

activities, two types of features, which are personal 

information and numerical features, were extracted. 

Personal information consists of user role, user functional 

unit, user team and “o”, “c”, “e”, “a” and “n” results of 

OCEAN test. The details about OCEAN test can be found 

at the test information page [34]. The numerical features 

were computed considering the number of daily activities 

with respect to activity types. In this context, 24 values, 

which are listed below, were computed for each sample. 

• n_of_logOnLogOf_work_on_own_pc: Number 

of logon-logoff in work on time with user own 

personal computer. 

• n_of_logOnLogOf_work_off_own_pc: Number 

of logon-logoff in work off time with user own 

personal computer.   

• n_of_logOnLogOf_work_on_other_pc:  Number 

of logon-logoff in work on time with other user’s 

personal computer.  

• n_of_logOnLogOf_work_off_other_pc: Number 

of logon-logoff in work off time with other 

user’s personal computer.  

• n_of_email_work_on_own_pc: Number of email 

in work on time with user own personal 

computer.  

• n_of_email_work_off_own_pc: Number of 

email in work off time with user own personal 

computer.  

• n_of_email_work_on_other_pc: Number of 

email in work on time with other user’s personal 

computer.   

• n_of_email_work_off_other_pc: Number of 

email in work off time with other user’s personal 

computer.  

• n_of_device_work_on_own_pc: Number of 

device in work on time with user own personal 

computer.  

• n_of_device_work_off_own_pc: Number of 

device in work off time with user own personal 

computer.  

• n_of_device_work_on_other_pc: Number of 

device in work on time with other user’s 

personal computer.  

• n_of_device_work_off_other_pc: Number of 

device in work off time with other user’s 

personal computer.  

• n_of_file_work_on_own_pc_toMedia: Number 

of file copy to temporary device from company’s 
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computer in work on time with user own 

personal computer.  

• n_of_file_work_off_own_pc_toMedia: Number 

of file copy to temporary device from company’s 

computer in work off time with user own 

personal computer.  

• n_of_file_work_on_other_pc_toMedia: Number 

of file copy to temporary device from company’s 

computer in work on time with other user’s 

personal computer 

• n_of_file_work_off_other_pc_toMedia: Number 

of file copy to temporary device from company’s 

computer in work off time with other user’s 

personal computer.   

• n_of_file_work_on_own_pc_fromMedia: 

Number of file transfer to company’s computer 

from temporary device in work on time with user 

own personal computer.   

• n_of_file_work_off_own_pc_fromMedia: 

Number of file transfer to company’s computer 

from temporary device in work off time with 

user own personal computer.  

• n_of_file_work_on_other_pc_fromMedia: 

Number of file transfer to company’s computer 

from temporary device in work on time with 

other user’s personal computer.  

• n_of_file_work_off_other_pc_fromMedia: 

Number of file transfer to company’s computer 

from temporary device in work off time with 

other user’s personal computer.  

• n_of_http_work_on_own_pc: Number of 

website activity in work on time with user own 

personal computer.  

• n_of_http_work_off_own_pc: Number of 

website activity in work off time with user own 

personal computer.  

• n_of_http_work_on_other_pc: Number of 

website activity in work on time with other 

user’s personal computer.  

• n_of_http_work_off_other_pc: Number of 

website activity in work off time with other 

user’s personal computer 

In feature extraction stage, numerical features were 

calculated considering two important situations: activity 

time and computer used for activity. It is thought that the 

increase in the use of computers of other employees and 

the activities performed in work off time are two important 

factors in determining the insider malicious actions. In 

addition to this, the information of whether data is received 

from the media or data is transferred to the media was also 

used to compute numerical features for file activities. 

Considering all these situations, four numerical features 

were computed for logon, email, device and http activities 

separately and eight numerical feature were computed for 

file activities. Therefore, a total of 24 numerical features 

were computed using five different activity records.  

After feature extraction steps, each sample was labeled as 

non-malicious (0) or malicious (1) using the answers file 

of CERT dataset. The answers file consists of malicious 

event from 5 different activities according to 3 scenarios of 

CERT datasets. It is assumed that, if any sample contains 

one of these malicious activities, this sample labeled with 

“1”. Otherwise the sample was labeled with “0”. As a result 

of preprocessing and feature extraction steps, 330452 

samples, which consist of 986 malicious and 329466 non-

malicious, and 29 features were obtained from 1000 users. 

Comprehensive details regarding dataset preprocessing 

and feature extraction can be found in the study proposed 

by Görmez et al. [35]. The code for these processes is 

available on the Detaysoft GitHub page [36]. 

2.3. Proposed Models 

In this study, two different approaches, which were role 

based and user based, were used to develop proposed deep 

learning models. In these approaches, small datasets were 

generated by dividing the dataset according to role type or 

user. In the role based models, dataset divided into 42 parts 

and in the user based models, dataset divided into 1000 

parts. In these approaches, models consisting of input layer 

and hidden layers for each section were generated 

separately, then combined in a single output layer to create 

the main model. There are two reasons to use these 

approach. There are cases where an action that is malicious 

for one person or group is not malicious action by another 

person or group. For example, a behavior that is normal for 

a person working in the IT department may be malicious 

for the human resources department. Therefore, training 

the UEBA models separately based on user or role affects 

the accuracy of model positively. Considering this 

situation, the input and hidden layers of our models were 

created user or role based separately. In this case, in order 

to prevent overfitting situations that may occur in the 

model and to generalize the model, the models created 

separately on the basis of role or person were combined in 

a single output layer. A total six model were proposed 

using these approaches. One of them was used only for role 

based, three of them were used only for user based and 

remaining were used both role and user based dataset. The 

architectures of these models are shown in figures below 

(Figure 1-5). The models can be summarized as traditional 

artificial neural network (MLP), convolutional neural 

network model (CNN), long short-term memory model in 

deep two (LSTM_2), long short-term memory model in 

deep four (LSTM_4), combination of convolutional neural 

network and long short-term memory in deep two 

(CNN_LSTM_2) and combination of convolutional neural 

network and long short-term memory in deep four 

(CNN_LSTM_4). 
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Figure 1. Architecture of role based multi-layer 

perceptron model  

MLP model, which was used only for role based approach, 

was shown in the figure 1. This model has contained 42 

input layer, because there were 42 different roles in the 

CERT dataset. A fully connected and Batch Normalization 

layers were added after each input layer. In fully connected 

layer, relu was used as an activation function and number 

of neurons were optimized. Note that, all hidden layers are 

identical which means that the number of neurons were 

same in each fully connected layer. All of this layers were 

concatenated at the output layer with softmax function to 

generate generalized classification layer. 

 
Figure 2. Architecture of role and user based convolution 

model 

 

Convolution model, which were used for both role or user 

based approaches, was shown in the figure 2. In this model, 

42 input layers were used for role based approach and 1000 

input layers were used for user based approach. Note that, 

two different models were generated for user and role 

based approaches separately. In this model, each input 

layer was followed by convolutional layer with kernel size 

7, Batch Normalization layer, convolutional layer with 

kernel size 1 and Batch Normalization layer in sequential 

order. After that, all of these layers for each user or role 

were concatenated. Later, followed by the shared fully 

connected and classification layer and the model was 

completed. Note that, similar to MLP model, layers created 

for each user or role are identical. Hyper-parameter 

optimization was applied user based and role based models 

separately. 

 

 
 

 
Figure 3. Architecture of role and user based long short-

term memory model at depth 2 

 

 
 

Long short-term memory model in deep 2, which were 

used for both role or user based approaches, was shown in 

the figure 3. Similar to convolution model, also in this 

model, 42 input layers were used for role based approach, 

1000 input layers were used for user based approach and 

two different models were generated for user and role 

based approaches separately. In this model, each input 

layer was followed by one directional long short-term 

memory layer, Batch Normalization layer, one directional 

long short-term memory layer and Batch Normalization 

layer in sequential order. After that, all of these layers for 

each user or role were concatenated. Later, followed by the 

shared fully connected and classification layer and the 

model was completed. Because there was a two long short-

term memory layer, this model was named as LSTM_2. 

Similar to other models, layers created for each user or role 

are identical and hyper-parameter optimization was 

applied user based and role based models separately. 
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Figure 4. Architecture of user based long short-term 

memory model at depth 2 

Long short-term memory model in deep 4 was shown in 

the figure 4. This model has contained 1000 input layer, 

because it was only used for user based approach. The 

layers of this model was exactly same with the LSTM_2 

model. Because this model contained four one directional 

long short-term memory layer, only difference from 

LSTM_2 model was the depth of the model. For this 

reason, the model was named as LSTM_4. This model was 

used in this study to measure the effect of depth on the 

performance of model. The depth was only measure for 

LSTM model, because the initial results showed that the 

best approach was user based LSTM model for UEBA. 

Similar to other models, layers created for each user are 

identical. 

 

Figure 5. Architecture of user based convolution and long 

short-term memory model at depth 2 

Combination of convolution and long short-term memory 

model in deep 2, which were used for only user based 

approach, was shown in figure the figure 5. In this model, 

input layers, which were generated for each user 

separately, were connected in parallel to convolution and 

LSTM modules. The convolution module was exactly 

same with the CNN model and the LSTM module was 

exactly same with the LSTM_2 model. At the final stage, 

modules generated for each user separately were 

concatenated and they followed by fully connected and 

classification layer. Similar to other models, layers created 

for each user are identical. This model was called as 

CNN_LSTM_2, because LSTM_2 was used to generate 

LSTM module. Combination of convolution and long 

short-term memory model in deep 4, which were used for 

only user based approach were also developed. This model 

was similar to CNN_LSTM_2 model where only 

difference was LSTM_4 model was used in order to 

LSTM_2 model for LSTM modules. Similar to other 

models, layers created for each user are identical. This 

model was called as CNN_LSTM_4, because LSTM_4 

was used to generate LSTM module. 

These models were developed using keras deep learning 

library of python [37]. In these models, hidden dense layer 

represents the traditional artificial neural networks. In the 

convolutional neural network models, two layers, which 

have different kernel sizes as seven and one, were 

connected each other serially. Note that, the convolution 

layers in these models consisted of 1D convolution 

operation. The horizontal width of the kernel was 29 that is 

equal to the total number of features. The convolution 

process was performed between activities performed by the 

same person on previous days.  In the LSTM models 

return_sequences parameter was set to True. Similar to 

convolution process, the LSTM layer also revealed the 

time series relationship by looking at the previous day 

activities of the same person. In all layers, relu was used as 

activation function, glorot_uniform with seed 1 was used 

as weight initializers, softmax was used as activation 

function at classification layer, Adam was used as 

optimizer and categorical_crossentropy was used as loss 

function. During the experiment, the layer specific hyper-

parameters of model were optimized using Bayesian 

optimization techniques. The details about the hyper-

parameter optimization process was given in the 

experiment results section 

3. EXPERIMENT RESULTS 

In the first phase of the experiment, four datasets, which 

are training, testing, training for optimization (trainingOpt) 

and testing for optimization (testingOpt), were generated 

by dividing the main dataset into parts with respect to user 

and sample date. Firstly, 30% percent of the main dataset 

(last samples by date for each user) selected to generate 

testing dataset and training dataset was generated using the 

rest of main dataset. After this phase, 25% percent of the 

training dataset (similar to testing dataset, these are the last 

samples by date of training dataset for each user) selected 

to generate testingOpt dataset, trainingOpt dataset was 

generated using the rest of training dataset. TrainingOpt 

and testingOpt datasets were used for hyper-parameter 

optimization phase and training dataset was used to train 

model with optimum hyper-parameter and testing dataset 
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was used to assess performance of trained model with 

optimum hyper-parameter.  

3.1. Hyper-Parameter Optimization 

Hyper-parameters are one of the most important factor that 

affect the performance of the deep learning models. 

Because number of hyper-parameters are high and hyper-

parameter space are large, traditional hyper-parameter 

optimization techniques are not effective for deep learning 

models [29]–[32]. Because of these reasons, in this study, 

hyper-parameters of the models were optimized using 

Bayesian optimization techniques. This method uses a 

Gaussian process with two aims: Modeling the surrogate 

function and optimizing the expected probability which is 

based on improving the existing best solutions through new 

trials. It assumes that the function values track a 

multivariate Gaussian distribution. A Gaussian kernel 

designates the covariance of the function values among the 

parameters. In each iteration, the next value of a parameter 

is selected through the acquisition function over the 

Gaussian prior.  

In this study, Bayesian Optimization technique was 

implemented using skopt library of python language [37]. 

From this library, gp_minimize function was used with 

hyper-parameter spaces using following parameters 

settings: n_cals = 250 and acq_func = “EI”. This library 

operates as a unique parameter space type. The model was 

optimized according to the mean of true negative rate and 

accuracy. In this context, according to the hyper-parameter 

type, three different variable types, which were Real, 

Categorical and Integer, were used. In these types, Real and 

Integer needs a low and high value and Categorical needs 

a hyper-parameter space as in grid search technique. For 

this purpose, these spaces were generated by determining 

the hyper-parameters to be optimized separately for each 

model and hyper-parameters of each model were optimized 

using trainingOpt and testingOpt datasets. Hyper-

parameter value type, space, and optimum value were 

shown in table 1 for each hyper-parameter of role based 

model and in table 2 for user based model. In this step, 

learning rate of the model (lr), number of epoch (epoch), 

batch size (batch), number of hidden unit in dense layer 

(n_unit_dense), number of kernel in convolutional layer 

(n_unit_conv_1) and dimension of output space of LSTM 

layers (n_unit_lstm_1-4) were optimized, if model need 

any of them. 

 

Table 1. Hyper-parameters value type, space and optimum value for role based models 

Model 

Name 

Parameter 

Name 
Value Type 

Parameter Space Optimum 

Value 

MLP 

lr Real low = 10-10, high = 10-1 0.059841909 

epoch Integer low = 10, high = 1500 1458 

batch Categorical {2,4,8,16,32,64,128,256,512,1024,2048} 1024 

n_unit_dense Integer low = 20, high = 5000 4076 

CNN 

lr Real low = 10-10, high = 10-1 0.0000004771 

epoch Integer low = 10, high = 1500 758 

batch Categorical {2,4,8,16,32,64,128,256,512,1024,2048} 2048 

n_unit_dense Integer low = 20, high = 5000 77 

n_unit_conv_1 Integer low = 20, high = 150 101 

LSTM_2 

lr Real low = 10-10, high = 10-1 0.0000022047 

epoch Integer low = 10, high = 1500 780 

batch Categorical {2,4,8,16,32,64,128,256,512,1024,2048} 512 

n_unit_dense Integer low = 20, high = 5000 2767 

n_unit_lstm_1 Integer low = 10, high = 100 34 

n_unit_lstm_2 Integer low = 10, high = 100 28 

As evident from the table data, an extensive search was 

conducted for hyper-parameters, particularly real values. 

The optimum values obtained could be any value within 

the specified range, unlike grid search. This is notably 

observed in the lr hyper-parameter. Upon examining the 

table data, it is noted that the epoch and batch parameters 

generally have high values. The lr parameter varies from 

model to model, but it is mostly close to the lower limit.  

 

Table 2. Hyper-parameters value type, space and optimum value for user based models 

Model Name 
Parameter 

Name 
Value Type 

Parameter Space Optimum 

Value 

CNN 

lr Real low = 10-10, high = 10-1 0.0000005749 

epoch Integer low = 10, high = 1500 1301 

batch Categorical {2,4,8,16,32,64,128,256,512,1024,2048} 16 
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n_unit_dense Integer low = 20, high = 5000 602 

n_unit_conv_1 Integer low = 20, high = 150 68 

LSTM_2 

lr Real low = 10-10, high = 10-1 0.00000000143 

epoch Integer low = 10, high = 1500 167 

batch Categorical {2,4,8,16,32,64,128,256,512,1024,2048} 8 

n_unit_dense Integer low = 20, high = 5000 1482 

n_unit_lstm_1 Integer low = 10, high = 100 51 

n_unit_lstm_2 Integer low = 10, high = 100 37 

LSTM_4 

lr Real low = 10-10, high = 10-1 0.00012994 

epoch Integer low = 10, high = 1500 399 

batch Categorical {2,4,8,16,32,64,128,256,512,1024,2048} 4 

n_unit_dense Integer low = 20, high = 5000 639 

n_unit_lstm_1 Integer low = 10, high = 100 10 

n_unit_lstm_2 Integer low = 10, high = 100 25 

n_unit_lstm_3 Integer low = 10, high = 100 29 

n_unit_lstm_4 Integer low = 10, high = 100 18 

CNN_LSTM_2 

lr Real low = 10-10, high = 10-1 0.0001284 

epoch Integer low = 10, high = 1500 1065 

batch Categorical {2,4,8,16,32,64,128,256,512,1024,2048} 2048 

n_unit_dense Integer low = 20, high = 5000 617 

n_unit_conv_1 Integer low = 20, high = 150 148 

n_unit_lstm_1 Integer low = 10, high = 100 28 

n_unit_lstm_2 Integer low = 10, high = 100 57 

CNN_LSTM_4 

lr Real low = 10-10, high = 10-1 0.00000002271 

epoch Integer low = 10, high = 1500 1500 

batch Categorical {2,4,8,16,32,64,128,256,512,1024,2048} 1024 

n_unit_dense Integer low = 20, high = 5000 20 

n_unit_conv_1 Integer low = 20, high = 150 34 

n_unit_lstm_1 Integer low = 10, high = 100 16 

n_unit_lstm_2 Integer low = 10, high = 100 10 

n_unit_lstm_3 Integer low = 10, high = 100 14 

n_unit_lstm_4 Integer low = 10, high = 100 26 

Based on the results observed in the table, unlike role-

based models, hyper-parameters in user-based models may 

exhibit more variation from model to model. Therefore, it 

cannot be interpreted as being close to the lower or upper 

limit for any hyper-parameter value. Particularly when 

examining hyper-parameter distributions with real values 

such as lr, the benefits of the Bayesian optimization method 

become evident once again.  

3.2. Performance Measures of Model Trained with 

Optimum Hyper-Parameters  

After hyper-parameter optimization process, models were 

trained using optimum hyper-parameters with training 

dataset and performance of models were assessed using 

testing dataset. Two callback functions, which were 

learning rate callback and early stopping callback, were 

added to model to improve the performance of our model. 

In the learning rate callback function, learning rate of the 

model was divided by two if there is no improvement on 

model loss for three epochs. Although number of epoch is 

optimized, sometimes stopping the model early before 

reaching the epoch number can affect the model 

performance positively. Because of this reason, the training 

process was stopped using early stopping callback, if there 

is no improvement on model loss for six epochs. For this 

purpose, testingOpt dataset was used as validation dataset 

during the training phase. Accuracy is the one of the most 

common performance metrics to measure the performance 

of the machine learning models. However, the accuracy 

score can be very misleading for the unbalanced datasets. 

Because the number of malicious actions are much less 

than the number of normal actions, our dataset also 

considered as unbalanced datasets. Because of these 

reasons accuracy, detection rate (DR), f1-score, false 

discovery rate (FDR) and negative predictive value (NPV), 

which were shown in table 3, were computed to assess the 

performance of our model. The details about these metrics 

can be found in the information page [39]. 
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Table 3. Performance measures of proposed model that trained using optimum hyper-parameters 

Model Name 
Model 

Base 
Accuracy DR F1-Score FDR NPV 

MLP Role 86.27% 90.67% 92.25% 13.76% 95.09% 

CNN Role 83.07% 86.05% 90.37% 16.95% 89.05% 

LSTM_2 Role 79.84% 89.88% 88.40% 20.24% 99.89% 

CNN User 98.86% 97.17% 99.19% 1.122% 95.47% 

LSTM_2 User 99.27% 98.07% 99.44% 0.724% 96.86% 

LSTM_4 User 99.18% 98.89% 99.38% 0.820% 98.60% 

CNN_LSTM_2 User 98.85% 98.21% 99.18% 1.144% 97.56% 

CNN_LSTM_4 User 98.94% 98.25% 99.24% 1.057% 97.56% 

According to these results, it is desired that all scores 

except FDR are high and FDR is low. When the experiment 

results are examined, it is seen that user based LSTM 

model in deep two obtained the best scores for all metrics 

except NPV and DR. Role based LSTM model in deep two 

obtained the best score for NPV metric and user based 

LSTM model in deep 4 obtained the best score for DR 

metric. When these results are interpreted, it is understood 

that solo LSTM models were the most successful predictor 

for UEBA and the effect of increasing the depth on the 

performance was negative. In addition to this, user based 

models have been much more successful than role based 

models. Considering all these situations, it is thought that 

the most suitable model for a UEBA platform is the user 

based LSTM model. The bar chart for each metric is 

presented in figure 6 to better visualize the performance 

between models. In this figure, bar charts were shown for 

each performance metrics separately and different colors 

were assigned to each model separately. The model shown 

with the same color in bar charts of all performance 

metrics. 

 
Figure 6. Bar chart of each model based on performance 

metrics 

3.3. Comparison with the State-of-the-art  

In order to better measure the contribution of the proposed 

models to the literature, it has great importance to compare 

them with the existing studies in the literature. Because of 

this reason, our model was compared with the four models, 

which were proposed by Le and Zincir-Heywood [16], Al-

Shehari and Alsowail [21], Nasir et al. [22] and Al-

Mhiqani et al. [25], from the literature. Table 4 shows the 

comparison result of these models with our model with 

respect to accuracy, DR, FDR or F1-score if they exist in 

state-of-the-art models. For the state-of-the-art comparison 

our LSTM model with deep 2 was used because it was the 

model with the best performance. These state-of-the-art 

models were selected because they were also developed 

based on user and they trained model on version 4.2 of 

CERT dataset.  

Table 4. Comparison between proposed and state-of-the-

art methods on version 4.2 of CERT dataset 

Model  Accuracy DR 
F1-

Score 

FDR 

Model of 

Le and 

Zincir-

Heywood 

[16] 

98.33% 69.51% 

-------- 0.350% 

Model of 

Al-

Shehari 

and 

Alsowail 

[21] 

-------- -------- 

99.00% -------- 

Model of 

Nasir et. 

al. [22] 

90.00% -------- 

94.00% -------- 

Model of 

Al-

Mhiqani 

et al. [25] 

97.00%  

84.00% 2.88% 

Proposed 

Model 
99.27% 98.07% 

99.44% 0.724% 

Based on these results, our model outperformed the state-

of-the-art model for accuracy, DR and F1-score metrics. 

However, autoencoder based model proposed by Le and 

Zincir-Heywood [16] were obtained better FDR score than 

our model. Considering the proportion taken for FDR, it is 

seen that both models achieve very low results. 

Considering that the proposed model achieves much better 

results especially for the DR score, it is thought that our 
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model is better than model proposed by Le and Zincir-

Heywood [16] according to the average metric results.  

3.4. Two-tailed Z-test  

Based on the experiment results, it is concluded that user 

based models have better results than the role based models 

and the proposed model out-performed the state-of-the-art. 

In this phase, it was checked whether these improvements 

were significant. For this purpose, two-tailed z test was 

applied on our experiment results and also our experiment 

results were compared with the state-of-the-art based on 

two-tailed z test score. The details about two-tailed z test 

can be found at information page [40]. Table 5 shows the 

p values between the best model (LSTM model in deep 

two) and the other model and table 6 shows the p values 

between LSTM_2 model and state-of-the-art based on 

comparison metrics. A p-value of less than 0.01 indicates 

that the proposed model is 99% reliable, according to the 

two-tailed Z test, and statistically outperforms the models 

in the literature. Thus, a statistical comparison of the model 

with the literature can be made by examining the results in 

Table 6.  

Table 5. P-values between LSTM_2 model and the other model calculated with two-tailed Z test. 

Model Name Model Base 
P-Value of 

Accuracy 

P-Value of 

DR 

P-Value of 

F1-Score 

P-Value of 

FDR 

P-Value of 

NPV 

MLP Role 0. 00001 0. 00001 0. 00001 0. 00001 0. 00001 

CNN Role 0. 00001 0. 00001 0. 00001 0. 00001 0. 00001 

LSTM_2 Role 0. 00001 0. 00001 0. 00001 0. 00001 0. 00001 

CNN User 0. 00001 0. 00001 0. 00001 0. 00001 0. 00001 

LSTM_4 User 0. 00001 0. 00001 0. 00001 0. 00001 0. 00001 

CNN_LSTM_2 User 0. 00001 0. 00001 0. 00001 0. 00001 0. 00001 

CNN_LSTM_4 User 0. 00001 0. 00001 0. 00001 0. 00001 0. 00001 

 

Table 6. P-values between LSTM_2 model and state-of-the-art model with two-tailed Z test. 

Model  Accuracy DR F1-Score FDR 

Model of Le and Zincir-Heywood [16] 0. 00001 0. 00001 -------- 0. 00001 

Model of Al-Shehari and Alsowail [21] -------- -------- 0. 00001 -------- 

Model of Nasir et. al. [22] 0. 00001 -------- 0. 00001 -------- 

Model of Al-Mhiqani et al. [25] 0. 00001 -------- 0. 00001 0. 00001 

Considering these results, it is seen that all improvements 

are statistically significant according to the two-tailed Z 

test at p < 0.01. The bold p-values represent the scores 

where the LSTM_2 model was worse than the related 

model. According to the results of two-tailed Z test, the 

model proposed by Le and Zincir-Heywood obtained 

statistically significant better results than our model for 

false discovery rate results. However, when models are 

considered based on all other metrics, our model seems to 

be superior. Especially in the detection rate score, it is 

observed that our model is significantly better than the 

model of Le and Zincir-Heywood [16].  

4. CONCLUSION AND FUTURE WORK  

In this study, several deep learning models, which were 

developed using fully connected layer, convolutional 

neural network and long short-term memory network, were 

proposed for user and entity behavior analysis. Our models 

used two different approaches: role based and user based. 

In user based models, the dataset is split so that each piece 

contains the data of one user. In role based approach, users 

with the same role were included in the same partition. 

Experiment analysis showed that user based models are 

better than the role based models.  

According to the analysis results, the MLP model achieved 

the highest accuracy among role-based models, with a rate 

of 86.27%. In addition, its DR, F1-Score, FDR, and NPV 

scores were measured at 90.67%, 92.25%, 13.76%, and 

95.09%, respectively. Surprisingly, the accuracy of this 

model was even lower than that of the CNN_LSTM_2 

model, which has the lowest accuracy among user-based 

models. The CNN_LSTM_2 model obtained values of 

98.21%, 99.18%, 1.144%, and 97.56% for DR, F1-Score, 

FDR, and NPV scores, respectively, outperforming the 

role-based MLP model in all metric scores. Considering 

these results, it is concluded that developing an insider 

threat system for an institution using a user-based approach 

is more effective in terms of performance metric scores. 

However, it's worth noting that user-based models may 

face challenges in corporate settings due to potential 

changes in an individual's authority or department. Such 

changes can lead to shifts in employee activities, 

potentially affecting the model's predictive accuracy. To 

address this issue, fine-tuning of the model is necessary, 

which may result in a decrease in model efficiency. In light 

of these considerations, it is concluded that role-based 

models are more compatible with corporate organizations. 

Therefore, future studies should focus on improving the 

accuracy of role-based models.  
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The best proposed model, which uses two serial connected 

LSTM layers, outperformed the state-of-the-art models and 

the improvement was statistically significant according to 

the two-tailed Z test at p < 0.01. Although our model 

obtained 99.27% accuracy on version 4.2 of CERT dataset, 

it is thought that the model should be improved in other 

metric scores such as negative predictive value and 

detection rate. Because of this reason, in the future work, 

more complex deep learning models will be developed 

using different approaches such as user, role, department 

and team based.  In addition to this, several feature 

selection techniques will be applied on CERT dataset. In 

this way, best deep learning structures for UEBA and the 

features that can best identify malicious action will be 

determined. A new UEBA approach will be proposed using 

this information and a model will be proposed using the 

data of our institution operating in the field of technology. 

For this purpose, daily activities of employees will be 

collected with a SIEM application used in our company. In 

line with the determined scenarios, these activities will be 

labeled and a specific dataset will be created for our 

institution. The proposed deep learning models will be also 

applied for this dataset and the results will be compared 

with the performance measures of CERT dataset. After all 

these analyzes, we are planning to integrate proposed 

model to our SIEM systems to analyze real time 

performance of UEBA systems 
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