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Abstract 

In recent years, epidemic modeling in complex networks has found many 

applications, including modeling of information or gossip spread in online social 

networks, modeling of malware spread in communication networks, and the most 

recent model of the COVID-19 pandemic. If the information disseminated is 

accurate, for example, maximizing its distribution is desirable, whereas if it is a 

rumor or a virus, its spread should be minimized. In this context, it is very important 

to identify super-spreaders that maximize or minimize propagation. Lately, studies 

for detecting super-spreaders have gained momentum. Most of the studies carried out 

aim to distinguish the influences of nodes under a specific propagation model (such 

as SIR) using network centrality measures and subsequently, to rank the nodes 

accordingly. However, in this study, we developed an algorithm that approximates 

the expected influence of nodes under the popular SIR model. By considering the 

behavior of the SIR model and only the shortest paths between nodes, the algorithm 

ranks the nodes according to this approximated value. Our developed algorithm is 

named the Expected Value Estimation (EVE). The main contribution of this study is 

that under the SIR model, the effects of nodes can be calculated quickly and 

realistically, regardless of the structure of the network. We compared the 

performance of EVE, using different SIR settings on real-world datasets, with that of 

many current well-known centrality measures. The experimental studies 

demonstrated that the solution quality (ranking capability) of EVE is superior to that 

of its competitors. 
 

 
1. Introduction 

 

Complex networks are highly suitable tools for 

modeling the real world. They have applications in 

many different fields such as natural sciences [1], 

health [2], cyber security [3], economics [4], and 

social networks [5]–[7]. Moreover, epidemic 

modeling in complex networks has attracted attention 

in recent years for its many practical benefits. The 

spread of a virus outbreak (such as Covid-19) can be 

estimated and precautions can be taken based on this 

[8]. By modeling the spread of gossip on the social 

network, the spread can be prevented [9], [10]. Or, the 

desired information may reach the maximum number 
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of people [11]. Whether you want to minimize the 

spread of gossip or maximize the spread of 

information, in any case, in order to do so, the set 

having the smallest number of the most influential 

individuals should be identified [12], [13]. The 

influences of these individuals under certain epidemic 

models (such as SIR) should be calculated in order to 

identify the smallest number of the most influential 

individuals (i.e., key players). For this, it is necessary 

to model the propagation by selecting each node 

individually as the seed. Since propagation models 

are stochastic models, they must be repeated many 

times (e.g., about 10.000 iterations) and the average 

value taken. This operation requires very high 
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processing power. On the other hand, researchers 

have noticed a correlation between the influence 

capacity of the nodes and network centrality 

measures, which have been used for a long time to 

determine the importance of nodes in complex 

networks. The basic expectation here is that as a 

centrality measure increases, the influence capacity 

increases, and as the centrality measure decreases, the 

influence capacity decreases. Since the calculation of 

centrality measures requires much less processing 

power than modeling the propagation thousands of 

times, studies have turned to this area. For this 

purpose, basic centrality measures such as Degree, 

Closeness, Betweenness [14], Katz [15], PageRank 

[16] were used and new centrality measures were 

developed. However, many of the measures 

developed only considered the local and global 

impacts of the nodes [17]–[22] or network 

communities [18], [19], [23]–[25]. Recently, another 

approach has been adopted that combines multiple 

centrality measures to develop new hybrid centrality 

measures [26]–[34]. However, many of these studies 

ignore the dynamics of the propagation model. Unlike 

other studies the dynamics-sensitive (DS) centrality 

combines network structure and epidemic model 

dynamics for ranking nodes [35]. The DS considers 

all possible random walks between two nodes for 

estimating the infectious probabilities of nodes. This 

method may work well for small beta values. 

However, it will overestimate the infection 

capabilities of nodes for larger beta values. 

In this study, we developed an algorithm that 

ranks nodes according to their influence capacity, 

taking into account the propagation behavior in the 

Susceptible-Infectious-Recovered (SIR) model. We 

named our developed algorithm the Expected Value 

Estimation (EVE) because it is based on 

approximating the expected influence of each node. It 

is worth mentioning here that the EVE algorithm does 

not calculate the importance of nodes contrary to the 

centrality measures. Instead, it calculates the 

approximate expected influence of the nodes under 

the SIR model and ranks the nodes accordingly. 

 

1.1. Motivation 

 

In the literature, centrality measures are proposed to 

detect influential nodes in complex networks. 

However; complex networks show very diverse 

characteristics, and therefore while a particular 

centrality measure can well distinguish influential 

nodes in a given network; it may not be able to on 

another network. In addition, the influence levels of 

nodes in the same network may vary under different 

propagation models. Therefore, trying to determine 

the influence levels of nodes only based on their 

centrality will not yield successful results in every 

network. When determining the influence levels of 

nodes, it is necessary to consider the dynamics of the 

given propagation model. Under certain epidemic 

models (such as SIR), it is necessary to perform heavy 

Monte-Carlo simulations to distinguish the influence 

of nodes However, if the dynamics of the SIR 

propagation model are taken into account, the process 

can be simplified by ignoring some of the behaviors 

of this model. Thus, the approximate expected 

influence of nodes can be calculated and used to rank 

nodes (similar to a centrality measures). With this 

motivation, by considering the behavior of the SIR 

model and only the shortest paths between nodes, the 

EVE algorithm ranks the nodes according to this 

approximated value. 

 

2. Preliminaries 

 

Before discussing the details of EVE, it would be 

useful to give some preliminary information. 

Let 𝐺 = (𝑉, 𝐸) be an undirected unweighted graph 

(network). Here, 𝑉 is the set of nodes (vertices), and 

𝐸 is the set of edges (links). 

 

2.1. Definition 1 (Susceptible-Infectious-

Recovered Model) 

 

The Susceptible-Infectious-Recovered (SIR) model is 

a well-known model used for population-based 

epidemic modeling. In recent years, due to their 

popularity, SIR and SIR variations have been applied 

to network topologies [36]. In the SIR model, nodes 

are found in one of three states: Susceptible (S), 

Infected (I), and Recovered (R). Nodes in state S are 

nodes that have the potential to become infected. 

Nodes in state I are nodes that have already been 

infected. Nodes in state R are recovered nodes. The 

transition of nodes between states occurs according to 

certain probabilities. A node in state I continues to 

infect its neighbors in state S with a certain 

probability as long as it remains in state I. This 

probability of infection is known as 𝛽. In other words; 

Nodes in state S are infected with probability 𝛽 by 

nodes in state I. Once a node goes to state I, it cannot 

return to state S again. Nodes in state I goes to state R 

with a certain probability. This probability of 

recovery is known as 𝛾. Once a node goes to state R, 

it cannot return to either state S or state I again. 

Initially, all other nodes are in a susceptible 

state, except for nodes that carry the disease (i.e., 

those that are infected). Starting from the nodes that 

are initially infected (called ‘seed nodes’), the disease 

spreads over the network. After a certain period of 
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time, there are no remaining infected nodes on the 

network and thus, the model is terminated. 

 

2.2. Definition 2 (Kendall’s tau Ranking 

Correlation Coefficient) [37] 

 

Let (𝑎𝑖, 𝑏𝑖) and (𝑎𝑗, 𝑏𝑗) be tuples of joint A and B 

ranking lists. If 𝑎𝑖 > 𝑎𝑗 and 𝑏𝑖 > 𝑏𝑗 or 𝑎𝑖 < 𝑎𝑗 and 

𝑏𝑖 < 𝑏𝑗  , then the tuples are concordant. If 𝑎𝑖 > 𝑎𝑗 and 

𝑏𝑖 < 𝑏𝑗  or 𝑎𝑖 < 𝑎𝑗 and 𝑏𝑖 > 𝑏𝑗 , then the tuples are 

discordant. If 𝑎𝑖 = 𝑎𝑗 or 𝑏𝑖 = 𝑏𝑗 , then the tuples are 

neither concordant nor discordant. Finally, tau is 

defined as in Equation (1). 

 

𝑡𝑎𝑢 =
𝑁𝑐 − 𝑁𝑑

0.5𝑁(𝑁 − 1)
 

     

(1) 

 

Here, 𝑁𝑐 is the number of concordant pairs, 

𝑁𝑑  is the number of discordant pairs, and 𝑁 is the 

number of all combinations. Positive 𝑡𝑎𝑢 values 

indicate a positive correlation, and negative 𝑡𝑎𝑢 

values indicate a negative correlation. 

 

2.3. Definition 3 (Ranking Monotonicity) [38] 

 

When you add a figure to your article, please refer to 

the relevant picture in the text, such as Figure 1. When 

using shapes, be attentive to use the Shape 

Description style. Additionally, there should be a 5 nk 

space between the figure and its caption [6], [7]. 

Monotony is a metric of how well the centrality 

measure assigns each node to different rank levels. 

The ranking monotonicity (RM) will be ‘1’ if all 

nodes are assigned to a different ranking level. If all 

nodes are assigned to the same ranking level, the RM 

will be ‘0’. Of course, for a centrality measure, the 

closer it is to RM 1, the better. The RM is calculated 

as follows: 

 

𝑅𝑀(𝐿) = (1 −
∑ 𝑛𝑟(𝑛𝑟−1)𝑟∈𝐿

𝑛(𝑛−1)
)

2
  

(2) 

 

Here, n is the length of the L-ranking list and 

𝑛𝑟 is the number of elements assigned to the same r 

rank. 

 

3. EVE 

 

Generally speaking, in the SIR model, a node affects 

its neighbor nodes with a probability β. If not its direct 

neighbor, it is likely to affect its neighbors' neighbors 

with probability (β × β). If the network is a tree, the 

probability of a node influencing another l-hop away 

node can be calculated as 𝛽𝑙 since there can be only 

one path between each pair of nodes. Thus, the 

expected influence of a node can be calculated using 

its distance to all other reachable nodes by this node 

as the sum of 𝛽𝑙 values. However, real networks 

rarely exhibit tree structures. Hence, there can be 

many different paths of different lengths between any 

two nodes. It is also costly to use all paths to all other 

nodes to calculate the expected influence of a node. 

However, the probability of one node influencing 

another node decreases exponentially with the 

distance between them, although in practice, the value 

of 𝛽 is much less than 1. The natural consequence of 

this is 𝛽𝑛 ≫ 𝛽𝑛+1, where 𝑛 ∈ ℕ+. Based on this 

information, the expected probability of a node 

influencing another node can only be approximated 

using the shortest path between these two nodes. This 

is because the probability of influence calculated for 

paths other than the shortest path will be much lower. 

The calculated values can be used to distinguish the 

influence capacities of the nodes (similar to a 

centrality measure). 

The working principle of EVE is based on 

expected value calculation. Therefore, it is useful to 

first look into the details of how a node infects its 

neighbor nodes in SIR and how this node recovers. 

This situation is shown for one iteration in Algorithm 

1 [39]. The node u in the algorithm was initially 

selected as the infected node or one infected at any 

point in time. 

 

Algorithm 1. Infection and Recover States of SIR 

1 sn = susceptible neighbors of node u 

2 for each v in sn 

3  rnd = random number in [0.0,1.0) 

4  if rnd <  𝛽 then 

5  mark v as infected 

6 end for 

7 rnd = random number in [0.0,1.0) 

8 if rnd <  𝛾 then 

9 mark u as recovered 

 

According to Algorithm 1, the node u infects 

its neighbors with probability β. After the node u 

infected its neighbors, this node is recovered with 

probability γ. If 𝛾 = 1, the node u has absolutely only 

one attempt to infect its neighbors since it will not be 

in the Infected state in the next iteration. If 𝛾 = 0.5, 

roughly, the node u has two attempts to infect its 

neighbors since it will be in the Infected state in the 

next iteration with probability 0.5. If we generalize, 

the node u has at least 1
γ⁄  attempts to infect its 

neighbors. Since the probability of the node u 

infecting its neighbors is β, the expected value of 
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infecting a neighbor by node u would be 1⁄γ times β; 

that is, β⁄γ. 

Let us explain the situation in Figure 1, where 

different topologies are shown. Notice that Figure 1-

a, b, and c are trees. Therefore, there is only one path 

between all nodes. 

In Figure 1-a, let the node u initially be 

selected as a seed (infected). The expected influence 

value (ev) of the node u becomes ev(u) = 1 + β⁄γ. Here, 

1 has been added as node u is already infected. Figure 

1-b shows the expected influence value (ev) of the 

node as: 

 ev(u)  =  1 +
𝛽

𝛾⁄ (probability of 𝑢 infecting 𝑦).  

In order to infect the node y, the node u must 

infect the node x. Next, the node x must infect the 

node y. The probability of these two events happening 

together can be obtained by multiplying the 

probabilities of their respective occurrence. Thus, the 

expected value of u infecting the node y is 

(
𝛽

𝛾⁄ ×
𝛽

𝛾⁄ ), i.e., (
𝛽

𝛾⁄ )
2

. Thus, the expected 

influence value (ev) of the node u becomes ev(u) = 

1 +
𝛽

𝛾⁄ + (
𝛽

𝛾⁄ )
2

. 

For Figure 1-c, the expected influence value 

(ev) of the node u is ev(u) = 1 + 2 × (
𝛽

𝛾⁄ ) + 2 ×

(
𝛽

𝛾⁄ )
2

. 

The expected value of a node infecting 

another node decreases exponentially with the 

distance between them. If we generalize the ev 

calculation, we get Equation (3). 

 

𝑒𝑣(𝑢) = 1 + 𝑛𝑛1 × (
𝛽

𝛾⁄ ) + 𝑛𝑛2 × (
𝛽

𝛾⁄ )
2

 

+ ⋯ + 𝑛𝑛ℎ × (
𝛽

𝛾⁄ )
ℎ

                                           (3) 

(3) 

 

Here, nn is the size of the set of node u’s 

neighbors at h-hop distance. The situation is a little 

different in Figure 1-d. The node y is both a 1-hop and 

a 2-hop neighbor of the node u. Therefore, the node u 

can infect the node y directly, as well as through the 

node x. Thus, the expected value of node u infecting 

the node y is the sum of these two possibilities, or 1 

at most. Ultimately, the expected influence of the 

node u becomes ev(u) = 1 + (
𝛽

𝛾⁄ ) +

𝑚𝑎𝑥 {1, ((
𝛽

𝛾⁄ ) + (
𝛽

𝛾⁄ )
2

)}. Let us explain why we 

use the max function here. For example, if  
𝛽

𝛾⁄ = 1, 

the expected value of node u infecting the node y 

would be 2. However, this value can be at most 1, 

since once a node is infected, it cannot be infected 

again.  

In large and complex networks, there can be 

many different paths having different lengths from 

one node to another. It is quite costly to consider all 

paths. Instead, only the shortest paths can be 

considered. Thus, as in Figure 1-e, the (x, y) edge is 

ignored and the approximate ev can be calculated 

using Equation (3). However, instead of changing the 

structure of the graph, only neighbors with h-shortest 

path hop distance can be included when creating 

𝑛𝑛ℎsets. Thus, it is guaranteed that 𝑛𝑛𝑎 ∩ 𝑛𝑛𝑏 = ∅ ; 

here 𝑎 ≠ 𝑏 and 𝑎, 𝑏 ∈ {1 … ℎ}. If we named as 𝑠𝑝𝑛ℎ 

to the sets created by selecting only neighbors with h-

shortest path hop distance, we can calculate the 

measure we call EVE as in Equation (4). 

 

𝐸𝑉𝐸(𝑢) = 1 + 𝑠𝑝𝑛1 × (
𝛽

𝛾⁄ ) + 𝑠𝑝𝑛2

× (
𝛽

𝛾⁄ )
2

+ ⋯ + 𝑠𝑝𝑛ℎ

× (
𝛽

𝛾⁄ )
ℎ

 

(4) 

 

Equation (4) does not take into account paths 

other than the shortest paths. In the literature, β is 

usually taken as very small (e.g., ≤0.1) and 𝛄 as large 

(e.g., = 1). The corollary of this is (
𝜷

𝛄⁄ )
𝒍

≫ (
𝜷

𝛄⁄ )
𝒍+𝟏

, 

where 𝒍 ∈ ℕ+. Thus, it can be considered reasonable to 

ignore paths other than the shortest paths. In practice, 

EVE can be calculated as in Algorithm 2. The Sort 

function sorts the dictionary in descending order. The 

Power function takes two parameters such as x and y 

and returns the value 𝑥𝑦. As a result, Function EVE 

returns the list of nodes sorted in descending order 

according to their EVE values. 

 
Algorithm 2. EVE 

FunctionEVE(G: Graph, 𝛽, 𝛾) 

Begin 
L = {} // L is a dictionary as L[node]=EVE 

SP = dictionary of all pairs shortest path of G.  

// If there is at least one path between two nodes then 

// SP[node,node] is a number. // Otherwise, it is ∞. 

V = G’s set of nodes 

for each u in V 

    EVE = 0 

    for each v in V 

        if SP[u,v]≠ ∞ then 

EVE = EVE + Power(𝛽 ⁄ 𝛾, SP[u,v]) 

         L[node]=EVE 

Sort L descending order by value  

return key list of L  

End 
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(a) (b) (c) 

  

(d) (e) 

Figure 1. Sample graphs for EVE calculation: (a), (b), (c) every node belongs to only one h-hop neighborhood, (d), (e) 

node-y belongs to different h-hop neighborhoods. 

 

4. Experiments 

 

To evaluate the performance of EVE, we determined 

five competitor centrality measures and experimented 

with different SIR settings over four real-world 

datasets. First, let us look at the competing centrality 

measures and datasets. 

 

4.1. Centrality Measures 

 

DC (Degree Centrality) is calculated by dividing the 

degree of the node by the total number of nodes in the 

graph minus one [40].  

EC (Eigenvector Centrality) is used to 

determine the importance of a node in the network. 

The basic logic of EC is that the more adjacent a node 

is to the important nodes, the more important it is [41]. 

CC (Closeness Centrality) is a measure of 

how close a node is to other nodes [42]. The closer the 

node is to other nodes, the larger the CC. 

BC (Betweenness Centrality) is the 

proportional information on how many of the shortest 

paths between all pairs are through a node [14]. 

GC (Gravitational Centrality) is a recent 

centrality measure inspired by Newton's gravitational 

formula [30]. Instead of the mass in the original 

formula, it uses the k-shell values of the nodes and 

instead of the distance, it uses the length of the 

shortest path between nodes. Its formula is as follows: 

 

𝐺𝐶𝑖 =
𝑘𝑠𝑖 × 𝑘𝑠𝑗

∑ 𝑑(𝑗, 𝑖)𝑗∈Ν
 

  (5) 

 

Here, 𝑑(∙) is the length of the shortest path 

between nodes 𝑖 and 𝑗; Ν is the set of 3-hop neighbors 

of node 𝑖. 
MLD (multi-local dimension) is a state-of-

the-art centrality measure proposed by Wen et. al 

[43]. MLD considers a node as the center and 

calculates the ratio of this node's neighbors up to the 

r-hop distance to the number of all nodes for different 

radius (r) values. It then calculates a centrality 

measure for the node based on this value. For the 

details of MLD, the related study can be examined. 

 

4.2. Datasets 

 

We used the following one synthetic and eight real-

world networks for the experiments. The properties of 

the networks are given in Table 1. All the real-world 

datasets are taken from http://networkrepository.com 

[44]. 

 

 

 

 

 

 

 

x u x u y 

x u y 

z t 

x u y x u y × 
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Table 1. Network dataset features. 

Dataset |𝑉| |𝐸| 〈𝐾〉 𝐾𝑚𝑎𝑥 

Barabasi-

Albert 

1000 9900 19.8 198 

Ca-GrQc 5242 14496 5.53 81 

Email-Enron 143 623 8 42 

Email-Univ 1133 5451 9.62 71 

inf-power 4941 6594 2.66 19 

inf-USAir97 332 2126 12.80 139 

rt_alwefaq 4171 7123 3.41 879 

rt_bahrain 4676 8007 3.42 261 

rt_damascus 3052 3881 2.54 648 

 

4.3. Performance Comparison of the Measures 

 

We evaluated the performance of EVE and the 

competitor centrality measures from different angles. 

First, we looked at the Kendall ranking performances. 

We then compared their Monotonicity performances. 

Finally, we looked at how many of the nodes in the 

top 5% of the ranking lists created by the measures 

corresponded to the ranking lists created according to 

the SIR simulations. 

We applied SIR model to measure influences 

of nodes. We set  γ = 1, and we tried different values 

for β around the epidemic threshold (𝛽𝑡ℎ). The 

epidemic threshold is calculated as in (6) [45]. 

 

β 𝑡ℎ ≈
〈𝑘〉

〈𝑘2〉−〈𝑘〉
  

 

             (6) 

Here 〈k〉 denotes the average degree, and 〈k2〉 
denotes the second-order moment of the degree 

distribution [45]. 

In the SIR simulations, we set each node as 

the only infected node in the network. We ended the 

simulations when there were no infected nodes left in 

the network. At the end of each simulation, we took 

the number of recovered nodes in the network as the 

influence of the node selected as the single infected 

node at the beginning of that simulation. We repeated 

the simulation for each node 1000 times and took the 

average of their influences as the final SIR score. For 

the simulations we used Python and NetworkX [46]. 

 

4.3.1. Kendall Ranking 

 

The best results were given by EVE in six 

experiments, by GC in two experiments, and by EC in 

one experiment. In addition, the EVE tau values in all 

experiments are very close to 0.8 or higher. The more 

detailed results are shown in Figure 2. 

The ranking performances of EVE and the 

competitor centrality measures for 𝛽 = 𝛽𝑡ℎare shown 

in Table 2. The best results are emphasized in bold. 

Ranking performances were calculated using 

Definition 2, as the Kendall’s tau ranking correlation 

coefficient. The ranking list created by the measure 

and the list created by SIR simulations were used in 

the calculations.  

 
Figure 2. Kendall’s 𝑡𝑎𝑢 correlation coefficient results of the centrality measures.  
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Table 2. Kendall’s 𝑡𝑎𝑢 correlation coefficient results of the centrality measures for 𝛽 = 𝛽𝑡ℎ. 

Dataset DC EC CC BC GC MLD EVE 

Barabasi-Albert 0.5214 0.5645 0.5595 0.4965 0.5622 0.1859 0.5550 

Ca-GrQc 0.6840 0.5353 0.5030 0.3740 0.7322 0.4822 0.7439 

Email-Enron 0.7559 0.7959 0.6617 0.4590 0.8137 0.6490 0.7781 

Email-Univ 0.7271 0.7734 0.7310 0.5975 0.7737 0.6691 0.7663 

inf-power 0.4204 0.4504 0.2620 0.2936 0.5519 0.4825 0.5631 

inf-USAir97 0.7307 0.7592 0.6998 0.5649 0.7608 0.6582 0.7629 
rt_alwefaq 0.2380 -0.0553 -0.0562 0.2977 0.3888 0.0 0.3988 

rt_bahrain 0.4174 -0.1950 -0.1893 0.3965 0.6397 0.0 0.6577 

rt_damascus 0.3819 -0.1259 -0.1255 0.3080 0.5064 0.0 0.5134 

 

4.3.2. Ranking Monotonicity 

 

The monotonicity values of the ranking lists created 

by EVE and the competitor centrality measures are 

shown in Table 3. The values were calculated using 

Definition 3. Since the ranking lists created by the 

centrality measures depend only on the network 

structure, their monotonicity values were calculated 

only once for each data set. The ranking list created 

by EVE is dependent on 𝛽. So, its monotony values 

should be calculated for each 𝛽. On the other hand, 

the monotonicity of the EVE at different 𝛽 values are 

very close to the monotonicity of the EVE at 𝛽 = 𝛽𝑡ℎ. 

For the sake of brevity, we only give the monotonicity 

of the EVE values at 𝛽 = 𝛽𝑡ℎ. The monotonicity 

values calculated for EVE are 1 in three experiments 

and very close to 1 in the other three experiments. 

Meanwhile, the EC, CC, GC, and MLD also yielded 

successful results. GC and EVE have given 

competitor results for the retweet networks 

(rt_alwefaq, rt_bahrain, rt_damascus). 

Finally, we examined how many of the nodes 

in the top x% of the ranking lists created by the 

measure coincided with the nodes in the top x% of the 

ranking list created according to the SIR simulations. 

The results are shown in Tables 4-5. The best results 

are emphasized in bold. Nodes in the top-rank levels 

formed by the measure are expected to be more 

influential nodes. Therefore, the nodes at the top of 

the list and those at the top of the ranking list created 

according to the SIR simulations must be the same. 

According to the results, EVE outperforms the 

competitors in four experiments for top 3% and 

top5% of the ranking lists. 

 
Table 3. Monotonicity values of the centrality measures. 

Dataset DC EC CC BC GC MLD EVE 

Barabasi-Albert 0.9279 1.0 0.9999 1.0 1.0 1.0 1.0 

Ca-GrQc 0.9647 0.9973 1.0 0.7892 1.0 1.0 1.0 

Email-Enron 0.9958 1.0 1.0 0.9998 1.0 1.0 1.0 

Email-Univ 0.97316 0.9995 0.9995 0.9920 0.9995 0.9995 0.9995 

inf-power 0.8043 0.6897 0.9947 0.9543 0.9939 0.9947 0.9947 

inf-USAir97 0.9830 0.9966 0.9944 0.9403 0.9961 0.9956 0.9956 

rt_alwefaq 0.6933 0.9672 0.9944 0.0878 0.2680 0.0698 0.2635 

rt_bahrain 0.7677 0.8805 0.9910 0.1590 0.4866 0.1991 0.4800 

rt_damascus 0.3999 0.3130 0.9543 0.0506 0.2382 0.0979 0.2359 

 

 
Table 4. The number of matching nodes in the top 3% of the ranking list was created according to SIR simulations 

with the ranking lists created by the measures. 

Dataset DC EC CC BC GC MLD EVE 

Barabasi-Albert 24 25 26 24 25 23 24 

Ca-GrQc 18 19 13 2 21 0 19 

Email-Enron 1 4 1 1 3 2 1 

Email-Univ 20 24 17 14 19 16 21 

inf-power 47 88 16 13 86 48 50 

inf-USAir97 8 8 6 4 8 7 8 

rt_alwefaq 57 17 12 42 49 29 61 

rt_bahrain 106 11 5 58 90 23 110 

rt_damascus 34 3 4 26 36 26 36 



A. Şimşek / BEU Fen Bilimleri Dergisi 13 (2), 408-417, 2024 

415 
 

Table 5. The number of matching nodes in the top 5% of the ranking list was created according to SIR simulations 

with the ranking lists created by the measures. 

Dataset DC EC CC BC GC MLD EVE 

Barabasi-Albert 40 41 41 41 41 39 41 

Ca-GrQc 36 26 20 7 38 0 37 

Email-Enron 4 4 3 3 4 5 3 

Email-Univ 37 36 35 31 38 34 36 

inf-power 80 150 46 39 134 91 101 

inf-USAir97 12 12 10 9 13 12 12 

rt_alwefaq 77 53 43 55 68 71 82 

rt_bahrain 161 18 6 97 158 63 181 

rt_damascus 86 24 23 49 83 63 93 

5. Discussion and Conclusions 

 

In this study, we proposed an approach that 

approximates the influences of nodes in complex 

networks under the SIR propagation model using 

the shortest paths between nodes and then applies 

this to rank the nodes. The EVE is similar to a 

centrality measure in that it is used for ranking 

nodes. However, EVE is not a general centrality 

measure, but a metric specific to the SIR model. As 

a result of nine datasets and five different SIR 

settings, EVE performed better than state-of-the-art 

and well-known centrality measures. 

We compared EVE with well-known 

centrality measures as well as with a state-of-the-art 

measure such as MLD, and GC, which are 

successful and innovative methods. The EVE 

demonstrated that the expected influences of nodes 

could be better distinguished by using the 

parameters of the propagation model and the 

shortest paths (without using the centrality 

measures of the nodes).  

The EVE is calculated using the shortest 

paths between nodes. This means that all other paths 

are ignored. In dense networks, there can be many 

different paths other than the shortest path between 

two nodes. Therefore, ignoring these paths increase 

the difference (error) between EVE and the actual 

expected influence.  

The time complexity of the EVE mostly 

depends on the shortest path calculation. The EVE 

needs to calculate all-pairs shortest path, and the 

known best worst-case time complexity for this 

purpose is 𝑂(|𝑉|3). After the calculation of all-pairs 

shortest paths, the EVE algorithm works. It has two 

nested loops that both have |𝑉| as the upper limit. 

So, time complexity of this part of the algorithm is 

𝑂(|𝑉|2). Of two consecutive algorithm parts, the 

complexity of the larger one is the complexity of the 

entire algorithm. Thus, the total complexity of EVE 

becomes 𝑂(|𝑉|3). 

As future work, EVE-like algorithms can be 

developed for other propagation models. 

Additionally, improvements can be made to EVE to 

obtain more accurate results on dense networks. 
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