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Abstract

In this study, the Pell-Lucas collocation method has been presented to solve high-order linear functional
differential equations with hybrid delays under mixed conditions. The proposed method is based on the
matrix forms of Pell-Lucas polynomials and their derivatives, along with the collocation points. The used
technique reduces the problem to a matrix equation corresponding to a set of algebraic equations with the
unknown Pell-Lucas coefficients. In addition, an error analysis based on residual function is performed and
some numerical examples are presented to show the efficiency and accuracy of the method.

Keywords: Pell-Lucas polynomials, collocation method, functional differential-equations, residual error

analysis, matrix method.

1. Introduction

In this study, we consider the high-order linear
functional-differential ~ equations  with  variable
coefficients and mixed delays in the generalized form
[1-12]

mp mp

m
D RO + DY By @y, + )
k=0 r=0s=0
=g(x),m=my (1.1)
under the conditions
m-—1
Z (ak jy(k)(a) + by ,-y(")(b)) = Aj ,
k=0
j=012,..,m—1. (1.2)

where the functions P, (x),F.,and g(x) are known
function having m-th derivatives on interval [a,b]; the
constants  a, g, by j, ay j, Brs and A; are appropriate
constants.

In the context of the modeling of dynamical systems,
the functional differential equations in the form (1.1)
play a central role in various fields such as biology,
economy, electrodynamics, potential theory,
electrostatics, astronomy, chemistry, mechanics,
physics, etc.[1,4,9,11,12]. Most of these equations have
not analytical solution and so, numerical methods may
be required to obtain their approximate solutions. For
example, some functional differential equations have
been solved by using the numerical methods such as
one-Leg 6 method [9], the spline function method [2],
Legendre-Gauss collocation method [4], Chebyshev
operational matrix method [5], Optimal residual method
[10], Dickson Collocation Method Based on Residual
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Error [11], Jacobian elliptic function method [12],
Chebyshev Collocation method with residual correction
[13], Legendre spectral collocation method [14] and
Lagrange-collocation method [15].

In recent years, some matrix and collocation methods to
solve linear and nonlinear differential, integral, integro-
differential, integro-differential-difference and
pantograph equations have been presented in many
articles by Sezer and Coworkers [7, 8, 11, 16-18]. The
purpose in this paper, by means of the above mentioned
methods, is to develop a new collocation method based
on Pell-Lucas polynomials and to find the approximate
solution of the problem (1.1)-(1.2) as the truncated Pell-
Lucas series defined by

N
V) 2 @) = ) @0l N2 m,
n=o
,a<x<bh (1.3)
where Q,(x),n =0,1,...,N, denote the Pell-Lucas

polynomials [19,20]; a,,n =0,1,...,N, are unknown
Pell-Lucas coefficients and N is any positive integer
chosen such that N > m. Besides, the collocation points
are defined by

a
i, (standard)

xi=a+

and

Xi
_b+ab—a
T2 2

Tl
cos (ﬁ) (Cheb. Lobatto) (1.4)
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2. Materials and Methods 2 0 0 0 0 0 0
2.1 Some Important Properties of the Pell-Lucas it
Polynomials [19,20] 0 21[0] 0 0 0 0 0
Pell-Lucas defined the set of polynomials{Q, (x)}. The i .
polynomials {Q,,(x)} are recursively defined by the 202[] 0 2?2[] 0 0 0 0
following relationships: 1L 20
31 33
0u(0) = 20,1 () + Q@ n 22 (21) oA ) e
o =) 5 P I
22 3\l 40
The Pell-Lucas polynomials Q,,(x) can also be given
explicitly by 0 215[3] 0 2@[4] 0 235[5] 0
[n/2] 312 N 50
n — . . . . .
0 = Y Akt (MK (22) N
=R i hig (2
) s Mg p N g2 N
The first four Pell-Lucas polynomial Q,,(x) : N+LIN-1 N3 N-3 N+ N-5 ()
Q(x) =2, Q:(x)=2x, Q(x)=4x+2, 21 212 2
Q;(x) = 8x3 + 6x, ...
If N is even,
2.2 Fundamental Matrix Relations and Pell- M =
Lucas Collocation Method T 0 0 0 0 0 0
Firstly, we approximate the solution (1.3) of the [
problem (1.1)-(1.2) by the matrix form 0 Zi[o] 0 0 0 0 0
y) =2yy(x) =Qx)A (2.3) 2 2 . . . .

where

Q) =[Q() () ..

A=la, a

v ()]
T

ay]’.

Now we clearly write the matrix form Q,,(x), by using
the Pell-Lucas polynomials Q,(x) given by (2.1) or
(2.2), as

Q(x) =X(x)M (2.4)
where
X(x)=[1 X X xN].
If N is odd,
MT =

142

N+
LI
2] H-4

2

N2
N2 :
W32 N-2
Ay

N
9 2
N
2

2

r
o= =

From the relations (2.3) and (2.4), we obtain the matrix
form

yn(x) = X(x)MA . (2.5)

Also, the relations between the matrix X(x) and its
derivative X (x) are

X®(x)=Xx)B*, k=01, (2.6)
so that
[100---0] [010...0]
[010 0] 002..0
B=loo10]|, B=l:i::w:l
|ls Dy JI looomNJ
0001 0000

By using the matrices (2.5) and (2.6), we have the
matrix relation
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® (x) = 3P (x) = 0O ()4 = X® (x)MA = m o e
Yy =yy(x) = @V (x) (x) szXBk+ZzFrsXB(arsu3rs)Br MA
X(x)B*MA, k=0,1,2,..,m (2.7) & L
=G (2.9)
and by substituting x - a,x + B, and k » Where
rin (2.7), the matrix relation
X (x0) 1 x x5 xg
y(r)(arsx + Brs) = X(aysx + Brs)B"MA X = X(?Cl) = 1 x'l x12 x‘{v ,
= X(x)B(ars Brs)B"MA (2.8) X(xn) 1 Xy x}% xIIVV
where 9(xo)
G =90
B ’ — :
O s frs) : 9(w) -
0 1 2 N Py = diag[Pe(x0) Pr(x1) Py (xy
aOﬂO aoﬂl a0ﬂ2_ aOﬂN
Q) SIS 1) IS™rs (o] rS°rs 0)rs"rs F, = diag[Fj(xo) Fj(x1) F}-(x,\,)],
0 1 1ﬂ 0 [2 lﬂ I N 1ﬂ N-1 In Eq. (2.9), the general forms of the matrices
1ars rs 1ars rs 1 ars rs P, X,B,E.;,B(a,8),M,Aand G, respectively, are
(N+Dx(N+1),(N+ Dx(N+1),(N+1Dx(N+
2 20 NI 9, N2 1D,(N+Dx(N+1),(N+ Dx(N+1),(N+ Dx(N +
0 0 A A 1, (N + Dx1 and (N + 1)x1.
2/ s rs 9 T8 rs
: ' : The fundamental matrix equation (2.9) can be expressed
' in the form
0 0 0 NaN/}O WA = G or [W;G] 2.10
NI Frs - bor (2.10)

Note that the matrix X(a, x + B, ) can be written as

X(arsx + prs) = X(x)B(a, B).
By substituting the relations (2.7) and (2.8) into
Eq.(1.1),we obtain the matrix equation

{Z P, (X)X (x)B*
k=0

mp; mp

+ z z E s(x)X(x)B(ar s, By s)B”

r=0s=0

}MA =g(x)

and then, by placing the collocation points (1.4),the
system of the matrix equations

{Z Pk(xi)X(xi)Bk
k=0
+ Z Z E”s(xi)x(xi)B(ar s .Br S)Br

mp; mp
=0s5=0

0,1,..

]MA = g(x),

i ,N.

The compact form of this system can be written as
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where

.

On the other hand, by mean of the relation (2.7), we can
write the matrix forms of the conditions (1.2) as

r=0 s=0

r,q=01,..,N.

UA=2; or [U,4],j=012,..,m—-1, (211)

such that

lh = ﬁﬁo ujl ujN]
m-—1

k=0

@ X(@) + b ;X (b)) (BY*M,
j=012,..,m-1.

Consequently, in order to obtain the Pell-Lucas
polynomial solution of Eq. (1.1) under the condition
(1.2), we replace the m row matrices (2.11) by any m
rows of the augmented matrix (2.10). Thereby we obtain
the new augmented matrix
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[W,G)or WA=G. (2.12)
If W =rank[W,G]=N+1, then we can write A =
(W)~ G. Thus the matrix A (thereby the Pell-Lucas
coefficients ay, a4, ..., ay) is uniquely determined. Also,
Eg. (1.1) under the conditions (1.2) has an unique
solution. This solution is given by the truncated Pell-
Lucas series (1.3).

3. Results and Discussion
3.1 Accuracy of Solutions and Residual
Estimation

Error

In this section, we investigate the accuracy of the
obtained Pell-Lucas solutions. When yy(x) and its
derivatives are substituted in Eqg. (1.1), the solved
equation is required to satisfy approximately. For x =
x, € [a,b],j =0,1,2,...,

Ru) = ) Bel) ¥4 ()

mp; mp

+ Z Z Frs() Y\ (@ sx5+Br5) — 9(x;) =0

r=0s=0

or
RN(xj) < 107%(, x; is any positive integer).

If max107% =107 (kjis an positive integer) is
determined, then the truncation limit N is increased
until the difference Ry(x;) at each of the points
becomes smaller than the prescribed 107%[16 — 18].

On the other hand, the accuracy of the solution can be
determined and the error can be estimated by means of
the residual function Ry(x) and the mean value of
[Ry(x)| on [a,b], If Ry(x) » 0 and N is sufficiently
enough, then the error decreases. Also, by using the
Mean-Value Theorem for the residual function [18], we
can estimate the upper bound of the mean error, Ry, :

b

< .”RN (x)fx

a

IRN(x)dx=(b—a)RN(c), a<c<b

a
b

.[RN (x)dx

a

= = (b-a)|R, (c)

= (b—a)|R, (¢)| < [|Ry (x)fix

b

JIRu (x)l

= |RN (C)| < abT

=R

3.2 Numerical Examples

Example 1. Consider the second order pantograph
equation

11 3 X — 2 2 < <1
V') =7y —y(5) = x*+2,0<x<

with initial conditions

y(©) =0, y'(0)=0.

The exact solution of this problem is y(x) = x?2 and the
coefficients in Eq. (1.1) are defined as

m=2,PO=T,P1=0,P2=1,F00=—1,

1
%oo =E 1Boo=0,9(x) = —x? + 2.

We find the solution y(x) with truncated Pell-Lucas
series for N=2

2

Y200 = ) 0,00 ()

n=o

and the collocation points for N = 2;{x0 =0, x, = %

X, =1 } are obtained. The fundamental matrix equation
of the problem can be written, using Eq. (2.9), as

{POXBOM +P,XB'M + P,XB’M
1
+ FOOXB(E,O)BOM}A =G

where
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W = P,XB°M + P,XB'M + P,XB’M
1
+ Fo,XB (E' 0) B°M.

Substituting the numerical values yields

-35 0 4.5 2
W=|-35 -125 35| and G=|175]|.
-35 -25 05 1

The matrix forms for the initial conditions in
(2.11) are

[u;4l=[2 0 2 ; 0]
[u;41=[0 2 0 ; 0]

Thus,
35 0 45 : 2
WA:@;[W,G]= 2 0 2 : 0l
0 2 0 0

By solving this system, the Pell-Lucas coefficients
matrix is determined as

A=[-0.25 0 0.25]".
This system yields the exact solution of the problem
y(x) = x2.

Example 2. Let us now consider the first order linear
differential-difference ~ equation  with  variable
coefficients

y'(x)—y(x)+2y(x —1) =2e'*,-1<x <0

under the initial conditions y(0) =1, y'(0) = —-1. A
complete solution of the problem

y(x) = e™*. Here the coefficients of the equation are

m=2,P0=_1,P2=1,F00=2,

1-x

Qoo =1,B00=—-1,9 =2e

We find the solution y(x) with truncated Pell-Lucas
series for N=2

2

Y209 = ) anu(®)

n=o

and the collocation points for N = 2;{x0 =-1, x;, =

_71, Xy =0} are obtained. The fundamental matrix
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equation of the problem can be written using, Eq. (2.9),
as

{P,XB° + P,XB? + FyoXB(1,—-1)B°}MA =G
where

W = P, XB°M + P,XB?>MF,,XB(1,—1)B°M .

Here,
-1 0 0
P()= 0 _1 O ]
0 0 -1
1 -1 1 2 00
B(l,—1)=[0 1 2 ,F00=[0 2 ol
0 0 1 0 0 2
1 -1 1
2 0 2 1 1
M=[0 2 ofl.X= -5 2|
0 0 4 1 0 o
0.27067 10 0
G =|0.44626(,P,=B°=|0 1 o0
0.73576 0 0 1

Substituting the numerical values yields

2 -6 38
Wl=[2 -5 27|
2 -4 18

The matrix form for the initial condition in (2.11) is
Uy A4]= [2 0 2 ; 1]
[U;A4]= [O 2 0 ; —1].

Thus, the new matrix equation based on the condition is
obtained as

WA=4§6
or
2 -6 38 : 14.778
[W;é]:z 0o 2 : 1
0 2 0 -1

By solving this system, the Pell-Lucas coefficients
matrix is determined as
A =1[0.20061 —0.5 0.29939]".

Thus, the approximate of the problem is obtained as
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y,(x) =1 —x + 1.1976x2.

Similarly, for N=3 and N=5, we find the following
solutions:

y5(x) = 1 —0.99998x + 0.17341x2 — 0.43898x3

ys(x) =1 —x + 0.48844x% — 0.19319x3
+0.01452x* — 2.0491x1072x°.

The residual errors for N=2, 3 and 5 is obtained as
follows;

j i IR, (]dx = 2.7279x10*
1[0 (D)
j'R s (9] dx =1.7061x10°°
10— (1)
R, = M=8.42103x10‘5
-1 |O_(_1)|
Thereby, the results related with exact solution,

approximate solution and residual error obtained by our
method for Example 2 are demonstrated in Table 1,
Figure 1 and Figure 2.

28

! I ! I I —+— Numerical solution for N=2
2 6. b e Numerical solution for N=3
) \: i '| —&— Numaerical solution for N=5
24 \ —I—Exaclt solutwlon

22

¥ (x)

Figure 1. Exact and numerical solutions of Example 2
for N=2,3and 5
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0.7 T T T -
| , ' ' ' —+— Error function for N=2
4 —— Emor function for N=3
e e S Error function for N=5

Error

09 08 07 06

X

Figure 2. Residual error functions of Example 2 for
N=2, 3 and 5.

Example 3. Let us consider the third order linear delay
differential equation with variable coefficients

X
") — 2y (@ + Y0 +y(3)

X
=xcos(2x)+cos(i) ,0<x<1

under the initial conditions

y@=1, y'(0)=0, y"(0)=-1

The exact solution of the problem is y(x) = cos x. Here
the coefficients of the equation are

m=3,P0=0,P1=1,P2=0,P3=1,F00=2,0(00
=1,Bp = -1
=X, 030 = 2,B20 =0,

g(x) = x cos(2x) + cos(g).

Fyo =

Now, we look for the Pell-Lucas solution in the form

3

y3(x) = Z anQn(x)

n=0

and obtain the collocation points for
1
N=3{x0=0, x1=§,

The fundamental matrix equation of the problem, Eq.
(2.9), can be written as
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PoXB° + P{XB' + P,XB* + P;XB? _ 1|R2(X)|dX s
+Fo0XBoo (%,0)B°+F20XB(2,O)BZ 4=6 R, ='(|; =0 =9.9656x10
where R, = j—| R (IO _ ) 1acr0u02
\ :
W = P, XB°M + P,XB'M + P,XB*M 0 |1_0|
—  FR.(X)|dx
+P3XB3M + FooXBoo (5,0) B'M R = I % = 2.32283x10°°
-
+F,,XB(2,0)B*M.
bl
09
Substituting the numerical values yields A I . N
0 0 0 0 ST
W] = 2 7/3 19/9 1270/27 I N N
|2 8/3 22/9 656/27 | Y] TOU AR WO S N ‘
2 3 3 14 NS S S .

The matrix forms for the initial conditions in are 03 """
02| —#— Numerical solution for N=3 """
[UO'ﬂ’O] = [2 0 2 0 ; 1] —&— Numerical solution for N=4 |}
01| —5— Numerical solution for N5 [ A i
[Ullﬂl] = [O 2 0 6 ; O] ) — — Exact solution | | |
0 01 02 03 04 05 06 07 08 09 1
[U,;41=[0 0 4 0 ; -1]. x
Thus, the new matrix equation based on the conditions ~ Figure 3. Comparisons of the exact and the numerical
are obtained as solutions of Example 3 for different N values
2 0 2 0 : 1 045—— S R pre————
o 1 | | 1 . [TOr TUNCLan for M=
[\/\7 _ GJ 2 713 19/3 1270/27 ; 124811 0l | & Emorfunction for N=4
’ 0 2 0 6 ; 0 | O L T A

0 0 4 0 -l |
03f
By solving this system, the Pell-Lucas coefficients 0251 .. _____ _______ _______ _______ _______ _______ _____
matrix is determined as 5 e
i)
02
A=[075 -0.026722 -0.25 0.006891] -
and the approximate the solution becomes: 01 : Gt
y3(x) =1 —x? + 5.51256x1072x3, 0.0
Similarly we find other solutions, for N=4 and N=5; 00"' ' _
X
— A2 —-2,.3
ya(x) = 1= x"+7.33548x10 {3 4 Figure 4. Residual error functions of Example 3 for
+ 3.895632x10°x N=2 3and5

ys(x) =1 —x% + 5.6289x1072x* — 8.7786x1073x".

The residual errors for N=2, 3 and 5:
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Consequently, the results related with exact solution,
approximate solution and residual error obtained by our
method for Example 3 are demonstrated in Table 2,
Figure 3 and Figure 4.
Table 1. Numerical results of the error function of Example 2 for N=2, 3 and 5
x; Exactsolution N=2 les(x;)| N=3 les(x;)| N=5 les(x;)|
-1.0 2.71828 3.1976  4.73e — 01 2.61237 1.05e — 01 2.7166 164 e — 03
-0.9 2.4596 2.87006 4.11e —01 2.36046 9.91e —02 2.4581 1.51e — 03
-0.8  2.22554 2.56646 3.41e —01 2.13572 8.98e — 02 2.2241 1.35¢ — 03
-0.7 2.01375 2.28682 2.73e —01 1.93553 7.82¢ —02 2.01253 1.22e — 03
-0.6 1.82212 2.03114 2.09¢ —01 1.75724 6.48¢ — 02 1.82104 1.07e — 03
-0.5 1.64872 17994 15le—01 159822 5.05¢ — 02 1.64781 9.14e — 04
-0.4 1.49182 159162 9.97e —02 1.45583 3.59¢ — 02 1.4911 7.28¢ — 04
-0.3  1.34986 1.40778 5.79¢ — 02 1.32745 2.24e — 02 1.43493 5.15¢ — 04
-0.2 1.22143 1.2479  2.65e — 02 1.21044 1.09e¢ — 02 1.22111 2.88e — 04
-0.1 1.10517 1.11198 6.8le — 03 1.10217 2.99¢ — 03 1.10508 9.16e — 05
00 10 1.0 0 1.0 0 1.0 0
Table 2. Numerical results of the error function of Example 3 for N=2, 3 and 5
x;  Exact N=3 les(x)|  N=4 les(x)l N=5 les (x|
solution
0.0 1.0 1.0 0.0 1.0 0.0 1.0 0.0
0.1 0.99501 9.91e — 01  4.94e — 03 9.91e — 01 4.93e — 03 9.9le — 01  4.99¢ — 03
0.2 0.98007 9.60e — 01 1.96e — 02 9.61e — 01 1.94e — 02 9.60e — 01 1.99¢ — 02
0.3 0.95534 9.11e — 01 4.38e — 02 9.12¢ — 01 4.33¢e — 02 9.10e — 01  4.49¢ — 02
0.4 0.92106 8.43e — 01 7.75e — 02 8.44e — 01 7.62e — 02 8.41e — 01 7.97¢ — 02
0.5 0.8 758 7.56e — 01 1.20e — 01 7.5% — 01 1.18e — 02 7.53e — 01 1.24e — 02
0.6 0.82533 6.51e — 01 1.73e — 01 6.56e — 01 1.68e — 02 6.46e — 01 1.78e — 02
0.7 0.76484 2.8%9¢ — 01 2.35e — 01 5.36e — 01 2.28e — 02 5.22¢ — 01 2.42e — 02
0.8 0.69670 3.88¢ — 01 3.08e — 01 3.95¢ — 01 2.97e — 02 3.80e — 01 3.16e — 02
0.9 0.62161 2.31le — 01 3.91le — 01 2.46e — 01 3.75e — 02 2.21le — 01 3.9%¢ — 02
1.0 054030 55le—02 4.85e—01 7.72¢—02 463e—02 475e—02  4.92¢ — 02

4. Conclusion

A new matrix method based on Pell-Lucas polynomials
and collocation points is proposed to solve the high-
order linear functional differential equations with hybrid
delays under mixed conditions. An error analysis based
on residual function is carried out to show the accuracy
of the results. It is observed from the tables and figures
that the error estimations are very effective. When the
exact solution of the problem is not known, the error of
the solution can be approximately computed by means
of this residual function. In addition, we compared the
numerical values of the approximate solutions obtained
by the method in tables and figures. Obviously the
results of the present method have been compared with
the different values of N. It is also clearly seen that the
Pell-Lucas matrix collocation method is more
convenient to apply to linear and nonlinear integro-
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differential equations. However, some regularizations
are required.
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