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Abstract 

In this study, the Pell-Lucas collocation method has been presented to solve high-order linear functional 

differential equations with hybrid delays under mixed conditions. The proposed method is based on the 

matrix forms of Pell-Lucas polynomials and their derivatives, along with the collocation points. The used 

technique reduces the problem to a matrix equation corresponding to a set of algebraic equations with the 

unknown Pell-Lucas coefficients. In addition, an error analysis based on residual function is performed and 

some numerical examples are presented to show the efficiency and accuracy of the method. 

Keywords: Pell-Lucas polynomials, collocation method, functional differential-equations, residual error 

analysis, matrix method. 

  

1. Introduction 

In this study, we consider the high-order linear 

functional-differential equations with variable 

coefficients and mixed delays in the generalized form 

[1-12]  

∑ 𝑃𝑘(𝑥)𝑦(𝑘)(𝑥)

𝑚

𝑘=0

+ ∑∑ 𝐹𝑟 𝑠(𝑥)𝑦(𝑟)(𝛼𝑟 𝑠 + 𝛽𝑟 𝑠)

𝑚2

𝑠=0

𝑚1

𝑟=0

= 𝑔(𝑥),𝑚 ≥ 𝑚1                     (1.1) 

under the conditions 

∑ (𝑎𝑘 𝑗𝑦
(𝑘)(𝑎) + 𝑏𝑘 𝑗𝑦

(𝑘)(𝑏))

𝑚−1

𝑘=0

= 𝜆𝑗  ,    

𝑗 = 0,1,2, … ,𝑚 − 1.                   (1.2) 

where the functions 𝑃𝑘(𝑥), 𝐹𝑟 𝑠𝑎𝑛𝑑 𝑔(𝑥) are known 

function having m-th derivatives on interval [a,b]; the 

constants 𝛼𝑟 𝑠, 𝑏𝑘 𝑗, 𝑎𝑘 𝑗 , 𝛽𝑟 𝑠 𝑎𝑛𝑑 𝜆𝑗 are appropriate 

constants. 

In the context of the modeling of dynamical systems, 

the functional differential equations in the form (1.1) 

play a central role in various fields such as biology, 

economy, electrodynamics, potential theory, 

electrostatics, astronomy, chemistry, mechanics, 

physics, etc.[1,4,9,11,12]. Most of these equations have 

not analytical solution and so, numerical methods may 

be required to obtain their approximate solutions. For 

example, some functional differential equations have 

been solved by using the numerical methods such as 

one-Leg 𝜃 method [9], the spline function method [2], 

Legendre-Gauss collocation method [4], Chebyshev 

operational matrix method [5], Optimal residual method 

[10], Dickson Collocation Method Based on Residual 

Error [11], Jacobian elliptic function method [12], 

Chebyshev Collocation method with residual correction 

[13], Legendre spectral collocation method [14] and 

Lagrange-collocation method [15]. 

In recent years, some matrix and collocation methods to 

solve linear and nonlinear differential, integral, integro-

differential, integro-differential-difference and 

pantograph equations have been presented in many 

articles by Sezer and Coworkers [7, 8, 11, 16-18]. The 

purpose in this paper, by means of the above mentioned 

methods, is to develop a new collocation method based 

on Pell-Lucas polynomials and to find the approximate 

solution of the problem (1.1)-(1.2) as the truncated Pell-

Lucas series defined by 

𝑦(𝑥) ≅ 𝑦𝑁(𝑥) = ∑ 𝑎𝑛𝑄𝑛(𝑥)

𝑁

𝑛=𝑜

  , 𝑁 ≥ 𝑚 ,  

, 𝑎 ≤ 𝑥 ≤ 𝑏                         (1.3) 

where 𝑄𝑛(𝑥), 𝑛 = 0,1, … , 𝑁, denote the Pell-Lucas 

polynomials [19,20]; 𝑎𝑛 , 𝑛 = 0,1, … , 𝑁, are unknown 

Pell-Lucas coefficients and N is any positive integer 

chosen such that 𝑁 ≥ 𝑚.  Besides, the collocation points 

are defined by 

𝑥𝑖 = 𝑎 +
𝑏 − 𝑎

𝑁
𝑖,   (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑) 

and 

𝑥𝑖

=
𝑏 + 𝑎

2

𝑏 − 𝑎

2
cos (

𝜋𝑖

𝑁
) (𝐶ℎ𝑒𝑏. 𝐿𝑜𝑏𝑎𝑡𝑡𝑜)             (1.4) 
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2. Materials and Methods 

2.1 Some Important Properties of the Pell-Lucas 

Polynomials [19,20] 

Pell-Lucas defined the set of polynomials{𝑄𝑛(𝑥)}.  The 

polynomials {𝑄𝑛(𝑥)} are recursively defined by the 

following relationships: 

 

     𝑄𝑛(𝑥) = 2𝑥𝑄𝑛−1(𝑥) + 𝑄𝑛−2(𝑥) , 𝑛 ≥ 2          (2.1) 

with 𝑄0(𝑥) = 2 𝑎𝑛𝑑 𝑄1(𝑥) = 2𝑥. 

 

The Pell-Lucas polynomials 𝑄𝑛(𝑥) can also be given 

explicitly by 

𝑄(𝑥) =  ∑ 2𝑛−2𝑘
𝑛

𝑛 − 𝑘
(
𝑛 − 𝑘

𝑘
)

[𝑛/2]

𝑘=0

𝑥𝑛−2𝑘.           (2.2) 

 

The first four Pell-Lucas polynomial 𝑄𝑛(𝑥) : 

𝑄0(𝑥) = 2, 𝑄1(𝑥) = 2𝑥 , 𝑄2(𝑥) = 4𝑥 + 2,
𝑄3(𝑥) = 8𝑥3 + 6𝑥,… 

 

2.2 Fundamental Matrix Relations and Pell-

Lucas Collocation Method 

Firstly, we approximate the solution (1.3) of the 

problem (1.1)-(1.2) by the matrix form 

𝑦(𝑥) ≅ 𝑦 𝑁(𝑥) = 𝑸(𝑥)𝑨                       (2.3) 

where 

𝑸(𝑥) = [𝑄0(𝑥)   𝑄1(𝑥) …  𝑄𝑁(𝑥)] 
𝑨 = [𝑎0    𝑎1    ⋯   𝑎𝑁]𝑇 . 

 

Now we clearly write the matrix form 𝑄𝑛(𝑥), by using 

the Pell-Lucas polynomials 𝑄𝑛(𝑥) given by (2.1) or 

(2.2), as 

𝑸(𝑥) = 𝑿(𝑥)𝑴                                (2.4) 
where 

2( ) 1 NX x x x x    . 

If N is odd,  
 

 

 

 

 

 

 

 

 

 

 

 

 
T M  

 

     

1

0 2

1 3

0 2 4

1 1 3

1

2 0 0 0 0 0 0

11
0 2 0 0 0 0 0

01

1 22 2
2 0 2 0 0 0 0

1 01 2

1 33 3
0 2 0 2 0 0 0

1 02 3

2 3 44 4 4
2 0 2 0 2 0 0

2 1 02 3 4

3 4 55 5 5
0 2 0 2 0 2 0

2 1 03 4 5

1

2
0 2

1 1

2 2

N

N

N N

 
 
 

   
   
   

   
   
   

     
     
     

     
     
     

 



 



3 5

3 5

2 2
0 2 0 2 2

3 3 5 01

2 2 2

N

N N

NN N N

N N NN N

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     
       
                    
     

 

 

If N is even,  
T

M = 

1

0 2

1 3

0 2 4

1 1 3

0

2 0 0 0 0 0 0

11
0 2 0 0 0 0 0

01

1 22 2
2 0 2 0 0 0 0

1 01 2

1 33 3
0 2 0 2 0 0 0

1 02 3

2 3 44 4 4
2 0 2 0 2 0 0

2 1 02 3 4

3 4 55 5 5
0 2 0 2 0 2 0

2 1 03 4 5

2
2 0 2

2 2

N

N

N N

 
 
 

   
   
   

   
   
   

     
     
     

     
     
     

 
 
 
 
 
 

2 2

2 4

2 2
0 2 0 2

2 22 4 0

2 22 2

N

N N

NN N N

N NN N N

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     
      
                 
    

. 

 

From the relations (2.3) and (2.4), we obtain the matrix 

form 

𝑦𝑁(𝑥) = 𝑿(𝑥)𝑴𝑨   .                                                  (2.5) 

Also, the relations between the matrix 𝑿(𝑥) and its 

derivative  𝑿(𝑘)(𝑥) are 

𝑿(𝑘)(𝑥) = 𝑿(𝑥)𝑩𝑘  , 𝑘 = 0,1, …        (2.6)  
so that 

𝐵0 =

[
 
 
 
 
1
0
0
⋮
0

 

0
1
0
⋮
0

 

0
0
1
⋮
0

 

…
…
⋯
⋱
⋯

 

0
0
0
⋮
1]
 
 
 
 

, 𝐵 =

[
 
 
 
 
0
0
⋮
0
0

 

1
0
⋮
0
0

 

0
2
⋮
0
0

 

…
…
⋱…
…

 

0
0
⋮
𝑁
0]
 
 
 
 

. 

 

By using the matrices (2.5) and (2.6), we have the 

matrix relation 
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𝑦(𝑘)(𝑥) ≅ 𝑦𝑁
(𝑘)(𝑥) = 𝑸(𝑘)(𝑥)𝑨 = 𝑿(𝑘)(𝑥)𝑴𝑨 =

𝑿(𝑥)𝑩𝑘𝑴𝑨,   𝑘 = 0, 1, 2, … ,𝑚                    (2.7) 

and by substituting 𝑥 → 𝛼𝑟 𝑠𝑥 + 𝛽𝑟 𝑠 𝑎𝑛𝑑 𝑘 →
𝑟 𝑖𝑛  (2.7), the matrix relation 

 

𝑦(𝑟)(𝛼𝑟 𝑠𝑥 + 𝛽𝑟 𝑠) = 𝑿(𝛼𝑟 𝑠𝑥 + 𝛽𝑟 𝑠)𝑩
𝑟𝑴𝑨     

      = 𝑿(𝑥)𝑩(𝛼𝑟 𝑠, 𝛽𝑟 𝑠)𝑩
𝑟𝑴𝑨                              (2.8) 

where 

 

( , )
r s r s

B    

0 1 20 0 0 1 0 2 0

0 0 0 0

1 21 0 1 1 1 -10
1 1 1

2 2 0 2 - 20 0
2 2

00 0 0

N N
r s r s r s r s r s r s r s r s

N N
r s r s r s r s r s r s

N N
r s r s r s r s

N N
r s r sN

        
        
        
      
      
      


   
       





 
 

   

       

     

   

 











 

Note that the matrix 𝑿(𝛼𝑟 𝑠𝑥 + 𝛽𝑟 𝑠) can be written as 

𝑿(𝛼𝑟 𝑠𝑥 + 𝛽𝑟 𝑠) = 𝑿(𝑥)𝑩(𝛼, 𝛽). 
By substituting the relations (2.7) and (2.8) into 

Eq.(1.1),we obtain the matrix equation 

 

{∑ 𝑃𝑘(𝑥)𝑋(𝑥)𝐵𝑘

𝑚

𝑘=0

+ ∑∑ 𝐹𝑟 𝑠(𝑥)𝑋(𝑥)𝐵(𝛼𝑟 𝑠, 𝛽𝑟 𝑠)𝐵
𝑟

𝑚2

𝑠=0

𝑚1

𝑟=0

}𝑀𝐴 = 𝑔(𝑥) 

 

and then, by placing the collocation points (1.4),the 

system of the matrix equations 

{∑ 𝑃𝑘(𝑥𝑖)𝑿(𝑥𝑖)𝑩
𝒌

𝑚

𝑘=0

+ ∑∑ 𝐹𝑟 𝑠(𝑥𝑖)𝑿(𝒙𝒊)𝑩(𝛼𝑟 𝑠, 𝛽𝑟 𝑠)𝑩
𝒓

𝑚2

𝑠=0

𝑚1

𝑟=0

}𝑴𝑨 = 𝑔(𝑥𝑖),

𝑖 = 0,1, … ,𝑁. 
 

 

 

The compact form of this system can be written as 

{∑ 𝑷𝒌𝑿𝑩𝒌

𝑚

𝑘=0

+ ∑ ∑𝑭𝑟 𝑠𝑿𝑩(𝛼𝑟 𝑠, 𝛽𝑟 𝑠)𝑩
𝑟

𝑚2

𝑠=0

𝑚1

𝑟=0

}𝑴𝑨

= 𝑮                                                (2.9) 

where 

 

𝑿 = [

𝑋(𝑥0)

𝑋(𝑥1)
⋮

𝑋(𝑥𝑛)

] =

[
 
 
 
1 𝑥0 𝑥0

2 … 𝑥0
𝑁

1
⋮

𝑥1

⋮
𝑥1

2

⋮

…
 ⋱

𝑥1
𝑁

⋮
1 𝑥𝑁 𝑥𝑁

2 … 𝑥𝑁
𝑁]
 
 
 
 , 

 𝑮 = [

𝑔(𝑥0)
𝑔(𝑥1)

⋮
𝑔(𝑥𝑁)

] 

𝑷𝑘 = 𝑑𝑖𝑎𝑔[𝑃𝑘(𝑥0) 𝑃𝑘(𝑥1) ⋯ 𝑃𝑘(𝑥𝑁)] 

𝑭𝑟 𝑠 = 𝑑𝑖𝑎𝑔[𝐹𝑗(𝑥0) 𝐹𝑗(𝑥1) ⋯ 𝐹𝑗(𝑥𝑁)]. 

In Eq. (2.9), the general forms of the matrices 

𝑃𝑘 , 𝑋, 𝐵, 𝐹𝑟 𝑠, 𝐵(𝛼, 𝛽),𝑀, 𝐴 𝑎𝑛𝑑 𝐺, respectively, are 

(𝑁 + 1)𝑥(𝑁 + 1), (𝑁 + 1)𝑥(𝑁 + 1), (𝑁 + 1)𝑥(𝑁 +
1), (𝑁 + 1)𝑥(𝑁 + 1), (𝑁 + 1)𝑥(𝑁 + 1), (𝑁 + 1)𝑥(𝑁 +
1), (𝑁 + 1)𝑥1 𝑎𝑛𝑑 (𝑁 + 1)𝑥1. 

The fundamental matrix equation (2.9) can be expressed 

in the form 

𝑾𝑨 = 𝑮 𝑜𝑟 [𝑾;𝑮]                   (2.10) 

where 

𝑾 = [𝒘𝑝𝑞] = {∑ 𝑷𝑘𝑿𝑩𝑘

𝑚

𝑘=0

+∑ ∑𝑭𝑟 𝑠𝑿𝑩(𝛼𝑟 𝑠, 𝛽𝑟 𝑠)𝑩
𝑟

𝑚2

𝑠=0

𝑚1

𝑟=0

}𝑴 ,  

𝑝, 𝑞 = 0,1, … , 𝑁. 

On the other hand, by mean of the relation (2.7), we can 

write the matrix forms of the conditions (1.2) as 

𝑼𝑗𝑨 = 𝝀𝑗   𝑜𝑟  [𝑼𝑗 , 𝝀𝑗], 𝑗 = 0,1,2, … ,𝑚 − 1,       (2.11) 

such that 

𝑼𝒋 = [𝑢𝑗 0 𝑢𝑗 1
⋯ 𝑢𝑗 𝑁] 

     = ∑ (𝑎𝑘 𝑗 𝑿(𝑎) + 𝑏𝑘 𝑗𝑿(𝑏))

𝑚−1

𝑘=0

(𝑩)𝒌𝑴,

𝑗 = 0,1,2, … ,𝑚 − 1. 

Consequently, in order to obtain the Pell-Lucas 

polynomial solution of Eq. (1.1) under the condition 

(1.2), we replace the m row matrices (2.11) by any m 

rows of the augmented matrix (2.10). Thereby we obtain 

the new augmented matrix 
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[�̃�, �̃�] 𝑜𝑟  �̃�𝑨 = �̃� .                       (2.12) 

If  �̃� = 𝑟𝑎𝑛𝑘[�̃�, �̃�] = 𝑁 + 1 , then we can write 𝐴 =

(�̃�)−1 �̃�. Thus the matrix A (thereby the Pell-Lucas 

coefficients 𝑎0, 𝑎1, … , 𝑎𝑁) is uniquely determined. Also, 

Eq. (1.1) under the conditions (1.2) has an unique 

solution. This solution is given by the truncated Pell-

Lucas series (1.3). 

3. Results and Discussion 

3.1 Accuracy of Solutions and Residual Error 

Estimation 

In this section, we investigate the accuracy of the 

obtained Pell-Lucas solutions. When 𝑦𝑁(𝑥) and its 

derivatives are substituted in Eq. (1.1), the solved 

equation is required to satisfy approximately. For 𝑥 =
𝑥𝑟 ∈ [𝑎, 𝑏], 𝑗 = 0,1,2, …, 

𝑅𝑁(𝑥𝑗) = ∑ 𝑃𝑘(𝑥𝑗)
( )k

Ny (𝑥𝑗)

𝑚

𝑘=0

 

+∑∑ 𝐹𝑟 𝑠(𝑥𝑗)
( )r

Ny (𝛼𝑟 𝑠𝑥𝑗+𝛽𝑟 𝑠)

𝑚2

𝑠=0

𝑚1

𝑟=0

− 𝑔(𝑥𝑗) 0   

or 

𝑅𝑁(𝑥𝑗) ≤ 10−𝑥𝑗(, 𝑥𝑗  𝑖𝑠 𝑎𝑛𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟). 

If max 10−𝑘𝑗 = 10−𝑘 (𝑘𝑗  𝑖s an positive integer) is 

determined, then the truncation 𝑙𝑖𝑚𝑖𝑡 𝑁 is increased 

until the difference 𝑅𝑁(𝑥𝑗) at each of the points 

becomes smaller than the prescribed 10−𝑘[16 − 18]. 

On the other hand, the accuracy of the solution can be 

determined and the error can be estimated by means of 

the residual function 𝑅𝑁(𝑥) and the mean value of 
|𝑅𝑁(𝑥)| on [𝑎, 𝑏], If 𝑅𝑁(𝑥) → 0 and N is sufficiently 

enough, then the error decreases. Also, by using the 

Mean-Value Theorem for the residual function [18], we 

can estimate the upper bound of the mean error, 𝑅𝑁
̅̅ ̅̅  : 

   

 

 

 

 

( ) ( ) , a c b

( )

( )

( )

( )

( )

b b

a a

b

a

b

a

N N

N N

b

a

N N

N N

b

N

NN

a

R x dx R dx

and

b a c

c

c

x

R x dx R

R x dx b a R

b a R R x

R x

R R

dx

dx

a
c

b



 

 

  

 

 







 









     

3.2 Numerical Examples 

Example 1. Consider the second order pantograph 

equation 

𝑦′′(𝑥) −
3

4
𝑦(𝑥) − 𝑦 (

𝑥

2
) = −𝑥2 + 2 , 0 ≤ 𝑥 ≤ 1 

with initial conditions 

𝑦(0) = 0 , 𝑦′(0) = 0. 

The exact solution of this problem is 𝑦(𝑥) = 𝑥2 and the 

coefficients in Eq. (1.1) are defined as 

𝑚 = 2 , 𝑃0 =
−3

4
 , 𝑃1 = 0 , 𝑃2 = 1 , 𝐹00 = −1 , 

 𝛼00 =
1

2
 , 𝛽00 = 0 , 𝑔(𝑥) = −𝑥2 + 2. 

We find the solution 𝑦(𝑥) with truncated Pell-Lucas 

series for N=2 

𝒚2(𝑥) = ∑ 𝒂𝑛𝑸𝑛(𝑥)

2

𝑛=𝑜

 

and the collocation points for 𝑁 = 2; { 𝑥0 = 0 , 𝑥1 =
1

2
,

𝑥2 = 1 } are obtained. The fundamental matrix equation 

of the problem can be written, using Eq. (2.9), as 

{𝑷0𝑿𝑩0𝑴 + 𝑷1𝑿𝑩1𝑴 + 𝑷2𝑿𝑩2𝑴

+ 𝑭00𝑿𝑩(
1

2
, 0)𝑩0𝑴}𝑨 = 𝑮 

where  
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𝑾 = 𝑷0𝑿𝑩0𝑴 + 𝑷1𝑿𝑩1𝑴 + 𝑷2𝑿𝑩2𝑴

+ 𝑭00𝑿𝑩 (
1

2
, 0)𝑩0𝑴. 

Substituting the numerical values yields 

3.5 0 4.5 2

3.5 1.25 3.5 1.75 .

3.5 2.5 0.5 1

W and G

   
   

   
   
       

 

The matrix forms for the initial conditions in 

(2.11) are 

 

 
0 0

1 1

[u ; ] 2 0 2 ; 0

[u ; ] 0 2 0 ; 0 .








 

Thus, 

�̃�𝐴 = �̃�  ; 

3.5 0 4.5 ; 2

; 2 0 2 ; 0 .

0 2 0 ; 0

W G

 
      
  

 

By solving this system, the Pell-Lucas coefficients 

matrix is determined as 

𝐴 = [−0.25 0 0.25]𝑇 . 

This system yields the exact solution of the problem 

𝑦(𝑥) = 𝑥2. 

Example 2. Let us now consider the first order linear 

differential-difference equation with variable 

coefficients 

𝑦′′(𝑥) − 𝑦(𝑥) + 2𝑦(𝑥 − 1) = 2𝑒1−𝑥 , −1 ≤ 𝑥 ≤ 0 

under the initial conditions 𝑦(0) = 1,   𝑦′(0) = −1. A 

complete solution of the problem 

𝑦(𝑥) = 𝑒−𝑥. Here the coefficients of the equation are 

𝑚 = 2 , 𝑃0 = −1 , 𝑃2 = 1 , 𝐹00 = 2 ,  

𝛼00 = 1 , 𝛽00 = −1 , 𝑔 = 2𝑒1−𝑥. 

We find the solution 𝑦(𝑥) with truncated Pell-Lucas 

series for N=2 

𝑦2(𝑥) = ∑ 𝑎𝑛𝑄𝑛(𝑥)

2

𝑛=𝑜

 

and the collocation points for 𝑁 = 2; { 𝑥0 = −1 , 𝑥1 =
−1

2
, 𝑥2 = 0 } are obtained. The fundamental matrix 

equation of the problem can be written using, Eq. (2.9), 

as 

{𝑷𝟎𝑿𝑩𝟎 + 𝑷𝟐𝑿𝑩𝟐 + 𝑭𝟎𝟎𝑿𝑩(𝟏,−𝟏)𝑩𝟎}𝑴𝑨 = 𝑮 

where  

𝑾 = 𝑷𝟎𝑿𝑩𝟎𝑴 + 𝑷𝟐𝑿𝑩𝟐𝑴𝑭𝟎𝟎𝑿𝑩(𝟏,−𝟏)𝑩𝟎𝑴  . 

Here, 

𝑷𝟎 = [
−1 0 0
0 −1 0
0 0 −1

] , 

 𝑩(𝟏, −𝟏) = [
1 −1 1
0 1 2
0 0 1

] , 𝑭𝟎𝟎 = [
2 0 0
0 2 0
0 0 2

]  

 𝑴 = [
2 0 2
0 2 0
0 0 4

] , 𝑿 = [

1 −1 1

1 −
1

2

1

4
1 0 0

] ,  

𝑮 = [
0.27067
0.44626
0.73576

] , 𝑷𝟐 = 𝑩𝟎 = [
1 0 0
0 1 0
0 0 1

]. 

Substituting the numerical values yields 

2 6 38

[W] 2 5 27 .

2 4 18

 
 

 
 
  

 

The matrix form for the initial condition in (2.11) is 

 

 
0 0

1 1

[U ; ] 2 0 2 ; 1

[U ; ] 0 2 0 ; 1 .







 
 

Thus, the new matrix equation based on the condition is 

obtained as 

�̃�𝐴 = �̃�     

    or  

2 6 38 ; 14.778

; 2 0 2 ; 1 .

0 2 0 ; 1

W G

 
      
  

 

By solving this system, the Pell-Lucas coefficients 

matrix is determined as 

𝐴 = [0.20061 −0.5 0.29939]𝑇 . 

Thus, the approximate of the problem is obtained as 
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𝑦2(𝑥) ≅ 1 − 𝑥 + 1.1976𝑥2. 

Similarly, for N=3 and N=5, we find the following 

solutions: 

𝑦3(𝑥) = 1 − 0.99998𝑥 + 0.17341𝑥2 − 0.43898𝑥3 

𝑦5(𝑥) = 1 − 𝑥 + 0.48844𝑥2 − 0.19319𝑥3

+ 0.01452𝑥4 − 2.0491𝑥10−2𝑥5. 

The residual errors for N=2, 3 and 5 is obtained as 

follows; 

0
2 1

2

1

0
3 3

3

1

0
5 5

5

1

( )
2.7279 10

0 ( 1)

( )
1.7061 10

0 ( 1)

( )
8.42103 10

0 ( 1)

R x dx
R x

R x dx
R x

R x dx
R x













 
 

 
 

 
 







 

Thereby, the results related with exact solution, 

approximate solution and residual error obtained by our 

method for Example 2 are demonstrated in Table 1, 

Figure 1 and Figure 2.  

Figure 1. Exact and numerical solutions of Example 2 

for   N=2, 3 and 5  

     Figure 2. Residual error functions of Example 2 for    

N=2, 3 and 5. 

Example 3. Let us consider the third order linear delay 

differential equation with variable coefficients 

𝑦′′′(𝑥) − 𝑥𝑦′′(𝑥) + 𝑦′(𝑥) + 𝑦 (
𝑥

2
)                        

= 𝑥 cos(2𝑥) + cos (
𝑥

2
)  , 0 ≤ 𝑥 ≤ 1 

under the initial conditions  

𝑦(0) = 1 , 𝑦′(0) = 0 , 𝑦′′(0) = −1. 

The exact solution of the problem is 𝑦(𝑥) = cos 𝑥. Here 

the coefficients of the equation are 

𝑚 = 3 , 𝑃0 = 0 , 𝑃1 = 1 , 𝑃2 = 0, 𝑃3 = 1 , 𝐹00 = 2 , 𝛼00

= 1 , 𝛽00 = −1  

 𝐹20 = −𝑥, 𝛼20 = 2 , 𝛽20 = 0 ,

𝑔(𝑥) = 𝑥 cos(2𝑥) + cos(
𝑥

2
). 

Now, we look for the Pell-Lucas solution in the form 

𝑦3(𝑥) = ∑ 𝒂𝑛𝑸𝑛(𝑥)

3

𝑛=0

 

and obtain the collocation points for  

𝑁 = 3 { 𝑥0 = 0 , 𝑥1 =
1

3
 , 𝑥2 =

2

3
 , 𝑥3 = 1}. 

The fundamental matrix equation of the problem, Eq. 

(2.9), can be written as 
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{
𝑷𝟎𝑿𝑩𝟎 + 𝑷𝟏𝑿𝑩𝟏 + 𝑷𝟐𝑿𝑩𝟐 + 𝑷𝟑𝑿𝑩𝟑

+𝑭𝟎𝟎𝑿𝑩𝟎𝟎 (
𝟏

𝟐
, 𝟎)𝑩𝟎 + 𝑭𝟐𝟎𝑿𝑩(𝟐, 𝟎)𝑩𝟐   

}𝑴𝑨 = 𝑮     

 where  

𝑾 = 𝑷𝟎𝑿𝑩𝟎𝑴 + 𝑷𝟏𝑿𝑩𝟏𝑴 + 𝑷𝟐𝑿𝑩𝟐𝑴 

     +𝑷𝟑𝑿𝑩𝟑𝑴 + 𝑭𝟎𝟎𝑿𝑩𝟎𝟎 (
𝟏

𝟐
, 𝟎)𝑩𝟎𝑴 

     +𝑭𝟐𝟎𝑿𝑩(𝟐, 𝟎)𝑩𝟐𝑴. 

 

Substituting the numerical values yields 

0 0 0 0

2 7 / 3 19 / 9 1270 / 27
[W] .

2 8 / 3 22 / 9 656 / 27

2 3 3 14

 
 
 
 
 

 

 

The matrix forms for the initial conditions in are 

 

 

 

0 0

1 1

2 2

[ ; ] 2 0 2 0 ; 1

[ ; ] 0 2 0 6 ; 0

[ ; ] 0 0 4 0 ; 1 .

U

U

U











 

 

Thus, the new matrix equation based on the conditions 

are obtained as 

2 0 2 0 ; 1

2 7 / 3 19 / 3 1270 / 27 ; 1.24811
; .

0 2 0 6 ; 0

0 0 4 0 ; 1

W G

 
 
      
 

 

 

By solving this system, the Pell-Lucas coefficients 

matrix is determined as 

 0.75 0.026722 0.25 0.006891
T

A     

and the approximate the solution becomes: 

𝑦3(𝑥) = 1 − 𝑥2 + 5.51256𝑥10−2𝑥3. 

Similarly we find other solutions, for N=4 and N=5; 

𝑦4(𝑥) = 1 − 𝑥2 + 7.33548𝑥10−2𝑥3

+ 3.895632𝑥10−3𝑥4 

𝑦5(𝑥) = 1 − 𝑥2 + 5.6289𝑥10−2𝑥4 − 8.7786𝑥10−3𝑥5. 

The residual errors for N=2, 3 and 5: 

1
2 2

3

0

1
3 2

4

0

1
5 2

5

0

( )
9.9656 10

1 0

( )
1.18579 10

1 0

( )
2.32283 10

1 0

R x dx
R x

R x dx
R x

R x dx
R x







 


 


 








 

 

Figure 3. Comparisons of the exact and the numerical 

solutions of Example 3 for different N values 

     
Figure 4. Residual error functions of Example 3 for 

N=2, 3 and 5 
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Consequently, the results related with exact solution, 

approximate solution and residual error obtained by our 

method  for Example 3 are demonstrated in Table 2, 

Figure 3 and Figure 4.  

 

 

 

Table 1. Numerical results of the error function of Example 2 for N=2, 3 and 5 

𝒙𝒊 Exact solution N=2 |𝒆𝟐(𝒙𝒊)| N=3 |𝒆𝟑(𝒙𝒊)| N=5 |𝒆𝟓(𝒙𝒊)| 
-1.0 2.71828 3.1976 4.73𝑒 − 01 2.61237 1.05𝑒 − 01 2.7166 164 𝑒 − 03 

-0.9 2.4596 2.87006 4.11𝑒 − 01 2.36046 9.91𝑒 − 02 2.4581 1.51𝑒 − 03 

-0.8 2.22554 2.56646 3.41𝑒 − 01 2.13572 8.98𝑒 − 02 2.2241 1.35𝑒 − 03 

-0.7 2.01375 2.28682 2.73𝑒 − 01 1.93553 7.82𝑒 − 02 2.01253 1.22𝑒 − 03 

-0.6 1.82212 2.03114 2.09𝑒 − 01 1.75724 6.48𝑒 − 02 1.82104 1.07𝑒 − 03 

-0.5 1.64872 1.7994 1.51𝑒 − 01 1.59822 5.05𝑒 − 02 1.64781 9.14𝑒 − 04 

-0.4 1.49182 1.59162 9.97𝑒 − 02 1.45583 3.59𝑒 − 02 1.4911 7.28𝑒 − 04 

-0.3 1.34986 1.40778 5.79𝑒 − 02 1.32745 2.24𝑒 − 02 1.43493 5.15𝑒 − 04 

-0.2 1.22143 1.2479 2.65𝑒 − 02 1.21044 1.09𝑒 − 02 1.22111 2.88𝑒 − 04 

-0.1 1.10517 1.11198 6.81𝑒 − 03 1.10217 2.99𝑒 − 03 1.10508 9.16𝑒 − 05 

 0.0 1.0 1.0 0 1.0 0 1.0 0 

 

 

Table 2. Numerical results of the error function of Example 3 for N=2, 3 and 5 

 

4. Conclusion 

A new matrix method based on Pell-Lucas polynomials 

and collocation points is proposed to solve the high-

order linear functional differential equations with hybrid 

delays under mixed conditions. An error analysis based 

on residual function is carried out to show the accuracy 

of the results. It is observed from the tables and figures 

that the error estimations are very effective. When the 

exact solution of the problem is not known, the error of 

the solution can be approximately computed by means 

of this residual function. In addition, we compared the 

numerical values of the approximate solutions obtained 

by the method in tables and figures. Obviously the 

results of the present method have been compared with 

the different values of N. It is also clearly seen that the 

Pell-Lucas matrix collocation method is more 

convenient to apply to linear and nonlinear integro-

differential equations. However, some regularizations 

are required. 
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