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 Abstract 

 In this paper, a new approach for obtaining Ranking efficiency with the fuzzy 

data numbers are being considered. Most Fuzzy DEA models are introduced in the 

literatary words  which are parametric models structured on alpha cuts. yet , the model 

is introduced in this study is parametric and is used trapezoidal fuzzy number. From the 

theotrical perspective, the objective of this study is to develop a simple and effective 

Fuzzy DEA-BCC model. The most and maximum possible efficiency scores of each 

DMU are estimated a few α-level, this model can be applied to determine many issues 

are associated with qualitative factors. It is checked by  applying the proposed method 

in two numerical examples are compared with the results of eight current models of 

fuzzy DEA. 

 Keywords: Fuzzy DEA, Efficiency Measurement, Ranking Model, α-Level, 

Decision Making Unit. 
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Aralıklı Lineer Programlama ve Bulanık VZA-BCC Modelleri  ile  KVB  

Sıralamalı Yeni Yaklaşım 

 

 Özet 

 Bu yazıda, bulanık veri sayıları ile Sıralamada etkinlik elde etmek için yeni bir 

yaklaşım ele alınmaktadır.Literatürde sunulan bulanık KVB modellerinin çoğu, alfa kesimler 

üzerinde yapılandırılmış parametrik modellerdir.Ancak bu çalışmada tanıtılan model 

parametriktir ve trapezoid bulanık sayı kullanmaktadır. Teori perspektifinden, bu çalışmanın 

amacı, basit ve etkili bir Bulanık KVB-BCC modeli geliştirmektir. Her bir KVB'nun mümkün 

olan en fazla ve en fazla verim puanının birkaç α seviyesinde olduğu tahmin edilmektedir, bu 

model, nitel faktörlerle ilişkili birçok sorunu belirlemek için uygulanabilir.İki sayısal örnekte 

önerilen yöntemi uygulayarak bulanık KVB'nın sekiz güncel modelinin sonuçları ile 

karşılaştırılmıştır. 

 Anahtar Kelimeler: Bulanık KVB, Etkinlik Ölçümü, Sıralama Modeli, α-Düzeyi, 

Karar Verme Birimi. 

1. Introduction and DEA Preliminaries 

Data envelopment analysis (DEA) is a linear programming method (LP), which 

measures the relative efficiency of the associated with the decision-making units 

(DMUs)When multiple inputs and outputs are present. To examine the radial technical 

efficiency of a given DMUp, Charnes et al. [6] proposed the constant RTS model (CRS or 

CCR). Assume that there are n DMUs to be evaluated, where every DMUj (j = 1, 2, . . . , n), 

produces s outputs,  yrj (r = 1, 2, . . . , s), using m inputs, xij (i = 1, 2, . . . ,m). The CCR model  

is proposed to evaluate the efficiency of a specific DMUp [6]. And to see the other basic 

models of DEA,the defendant is able see [3,7]. The Advanced DEA models divided DMUs 

into two efficient and inefficient groups while in practice. So, there are variety of researches 

classified ranking methods and Fuzzy Data envelopment analysis  FDEA are presented in the 

DEA literature [1,21]. This method removes the unit under the assessment from a group of 

DMUs, andmeasures the distance of DMU from the new efficient frontier. The α-level 

approach is the most popular fuzzy DEA models. Many articles are published about this 

method in the literatary DEN search. 
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From this approach, the key two ideas are to transform the fuzzy CCR model in some 

parametric programs in order to find the lower and upper limits or intervel of the α-level 

membership functions of the efficiency scores. And  find the fuzzy efficiency scores of the 

DMUs using fuzzy linear programs which require ranking fuzzy sets. It iscreated by the 

membership function for spaces of input and output on the most basis of the interpretation of 

the tolerance  limits. 

        Kao and Liu [36] followed up on the basic idea of transforming a fuzzy DEAmodel to a 

family of conventional crisp DEA models and developed a solution procedure to measure the 

efficiencies of the DMUs with fuzzy observations in the BCC model. Kao and Liu [36] 

proposed a pair of two-level mathematical models to calculate the lower bound  and upper 

bound of the fuzzy efficiency score for a specific α-level and used the ranking fuzzy numbers 

method of Chen and Klein to rank the obtained fuzzy efficiencies [8,9]. Saati et al. [52] 

suggested a fuzzy CCR model as a possibilistic programming problem and transformed it into 

an interval programming problem using α-level based approach. The resulting interval 

programming problem could be solved as a crisp LP model for a given a with some variable 

substitutions, use triangular fuzzy inputs and the triangular fuzzy outputs, and   x′ij and   y′rj 

are the decision variables obtained from variable substitutions used to transform the original 

fuzzy model proposed into a parametric LP model with α∈[0,1]. Saati and Memariani [54] 

suggested a procedure for determining a common set of weights in fuzzy DEA based on the α 

-level method proposed by Saati et al. [52] with triangular fuzzy data. In this method, the 

upper bounds of the input and output weights were determined by solving some fuzzy LP 

models and then a common set of weights were obtained by solving another fuzzy LP model. 

Hatami-Marbini and Saati [20] developed a fuzzy BCC model which considered fuzziness in 

the input and output data as well as the 𝑢0 variable. Consequently, they obtained the stability 

of the fuzzy 𝑢0 as an interval by means of the method proposed by Saati et al. [52]. Hatami-

Marbini et al. [16] used the method of Saati et al. [52] and proposed a four-phase fuzzy DEA 

framework based on the theory of displaced ideal. Liu et al. [43] developed a modified fuzzy 

DEA model to handle fuzzy and incomplete information on weight indices in product design 

evaluation transformed fuzzy information into trapezoidal fuzzy numbers and considered 

incomplete information on indices weights as constraints. They used an α-level approach to 

convert their fuzzy DEA model into a family of conventional crisp DEA models. 
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Jahanshahloo et al. [33] developed a fuzzy 𝑙1-norm model with trapezoidal fuzzy 

inputs/outputs that was initially suggested by Jahanshahloo et al. [29] for solving the crisp 

data in DEA. Wang et al. [59] proposed a fuzzy DEA-Neural approach with a self-organizing 

map for classification in their neural network. 

 They used the upper and lower bounds or entervel of efficiency score at different 

possibilistic levels in their model. Hosseinzadeh Lotfi et al. [24] developed two methods for 

solving fuzzy CCR model with respect to fuzzy, ordinal and exact data. They used an 

analogue function to transform the fuzzy data into exact values in the first method. 

 In the second approach (fuzzy ranking approach) of efficiency measurement was 

initially developed by Guo and Tanaka [15]. Furthermore, they proposed a fuzzy BCC model 

using the fuzzy number ranking method proposed by Yao and Wu [61] for trapezoidal fuzzy 

data in DEA. 

 In this study, we determine the maximum possible efficiency scores of each DMU at 

some α-levels. The obtained score of each DMU at level α can be represented by an interval. 

A number of these crisp intervals are used to represent the scores as a fuzzy interval. Finally, 

DMUs are ranked according to their fuzzy scores. So far, several papers have been presented 

on the theoretical development of DEA whit fuzzy data (FDEA models). 

        The defuzzification approach was developed by Lertworasirikul [4 241, ]. In this approach 

the fuzzy inputs and outputs are defuzzified into crisp values. This approach is simple but 

ignores the uncertainty in data. The α-level based approach was introduced by Kao and Liu 

[36], and Lertworasirikul [41]. In this approach, the FDEA model is solved by parametric 

programming using α-cuts. Solving the model at a given α-level produces a corresponding 

interval efficiency for the target DMU. A number of such intervals can be used to construct 

the corresponding fuzzy efficiency. This approach provides fuzzy efficiency but requires the 

ranking of fuzzy efficiency sets. The fuzzy ranking approach was developed by Guo and 

Tanaka [14]. In this approach, Both fuzzy inequalities and equalities in the fuzzy CCR model 

are defined by ranking methods so that the resulting model is α-level PLP model. This 

approach provides fuzzy efficiency for an evaluated DMU at a specified α-level. Guo and 

Tanaka compare fuzzy efficiencies using only one number at a given α-level. Lertworasirikul 
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et al. [4 241, ] show that for the special case, in which fuzzy membership functions of fuzzy 

data are trapezoidal types. 

 Charnes et al. [6] proposed the constant RTS model (CRS or CCR) to evaluate the 

radial technical efficiency of a given DMUp. Assume that there are n DMUs to be evaluated, 

where every DMUj (j = 1, 2, . . . , n), produces s outputs,  yrj (r = 1, 2, . . . , s), using m inputs, 

xij (i = 1, 2, . . . ,m). The BCC and CCR models differ only in that the former includes an 

additional convexity constraint, ∑ 𝜆𝑗 = 1𝑛
𝑗=1 , the additional variable, 𝑢0, in the dual BCC 

model as shown in this model (1). 

 

max𝑤𝑝 =  ∑𝑢𝑟

𝑠

𝑟=1

𝑦𝑟𝑝 − 𝑢0 

such that 

∑ 𝑣𝑖
𝑚
 𝑖=1 𝑥𝑖𝑝 = 1, 

 

∑ 𝑢𝑟
𝑠
 𝑟=1 𝑦𝑟𝑗 − ∑ 𝑣𝑖

𝑚
𝑖=1 𝑥𝑖𝑗 − 𝑢0 ≤ 1 (∀𝑗),    (1) 

 

𝑢𝑟 , 𝑣𝑖 ≥ 0 (∀𝑟, 𝑖). 

 

 2. Fuzzy Set Theory 

 One way to describe the vagueness and lack of precision of data is fuzzy sets theory 

which was introduced by Zadeh [63] in 1965. Here some of the definitions of this theory are 

presented [8,64]. 

 Definition 2.1: (Fuzzy set) If X is a collection of objects denoted by x, then a fuzzy set 

�̃� in X is a set of ordered pairs: 

�̃� = {(x;𝜇�̃�(x)) | x∈X} 

such that 𝜇�̃�(x) is called the membership function which for each x∈X associates a number in 

[0,1], indicating to what degree x is a member of X. 

 Definition 2.2: (Convex fuzzy set) A fuzzy set �̃� is convex if 

𝜇�̃�(𝜆𝑥1+(1−λ)𝑥2) ≥ min{𝜇�̃�(𝑥1), 𝜇�̃�(𝑥2)} (𝑥1, 𝑥2∈X and λ∈[0;1]).  (2) 
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 Definition 2.3: (Normal fuzzy set) A fuzzy set �̃� in X is said to be normal if there 

exist x∈X such that 𝜇�̃�(x) =1. 

 Definition 2.4: (Fuzzy number) A fuzzy number �̃� is a convex normalized fuzzy set �̃� 

of the real line  such that 

1. There exist exactly one 𝑥0∈ with 𝜇�̃�(𝑥0) = 1 (unimodal). 

2.  𝜇�̃�(x) is piecewise continuous. 

 Definition 2.5: (Positive fuzzy number) A fuzzy number �̃� is called positive 

(negative), denoted by �̃�>0 (�̃�<0), if its membership function, 𝜇�̃�(x) satisfies,  𝜇�̃�(x) = 0, x <0 

(x >0). 

 Definition 2.6: (LR fuzzy number) A fuzzy number �̃� is said to be LR if 

 

𝜇�̃�(𝑥) =

{
 

 𝐿 (
𝑎−𝑥

𝜎
)       𝑥 < 𝑎, 𝜎 > 0

𝑅 (
𝑥−𝑏

𝛽
)       𝑥 > 𝑏, 𝛽 > 0

  ,   (3) 

where σ and β are left and right spreads, respectively, and a function L(.) is the left shape 

function satisfying: 

1. L(x)=L(−x), 

2. L(0)=1 and L(1)=0, 

3. L(x) is non-decreasing on [0,∞). 

Naturally, a right shape function R(.) is similarly defined as L(.). 

 Definition 2.7: (LR fuzzy interval) A fuzzy set �̃� is said to be an LR fuzzy interval if 

 

𝜇�̃�(𝑥) =

{
 

 𝐿 (
𝑎−𝑥

𝜎
)       𝑥 < 𝑎, 𝜎 > 0

1                      𝑎 ≤ 𝑥 ≤ 𝑏

𝑅 (
𝑥−𝑏

𝛽
)       𝑥 > 𝑏, 𝛽 > 0

  ,   (4) 

 

where [a,b] is the peak or core of 𝑥 ̃and a and b are left and right spreads, respectively, and the 

functions L(.) and R(.) are the same as the functions of LR fuzzy number. 
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 Definition 2.8: (Triangular fuzzy number) A LR fuzzy number �̃� is said to be 

triangular if L(.) and R(.) be linear functions. 

Remark: A membership function of triangular fuzzy number �̃� = (L;M;R) (L ≤ M ≤ R) 

is as follows: 

𝜇�̃�(𝑥) = {

(
𝑥−𝐿

𝑀−𝐿
)             𝐿 ≤ 𝑥 < 𝑀

1                     𝑥 = 𝑀

(
𝑥−𝑅

𝑀−𝑅
)             𝑀 < 𝑥 ≤ 𝑅

  .   (5) 

 

 Definition 2.9: (Trapezoidal fuzzy number) �̃� = (𝑥0  , 𝑦0 , 𝜎 , 𝛽)  with two defuzzifier 

𝑥0  , 𝑦0 and left fuzziness σ>0 and right fuzziness β>0 is a fuzzy set where the membership 

function is as: 

𝜇�̃�(𝑥) =

{
 
 

 
 
1

𝜎
(𝑥 − 𝑥0 + 𝜎)     𝑥0 − 𝜎 ≤ 𝑥 ≤ 𝑥0

1                            𝑥 ∈ [𝑥0, 𝑦0]
1

𝛽
(𝑦0 − 𝑥 + 𝛽)     𝑦0 ≤ 𝑥 ≤ 𝑦0 + 𝛽

0                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  .  (6) 

 4. Introduction to Theory 

 In this section, we review some basic definitions of fuzzy sets [11,35,65]. 

 

 Definition 3.1:  A fuzzy number �̃� in parametric form is a pair (�̃�𝑖 , �̃�𝑑 ) of functions 

�̃�𝑖 (𝑟), �̃�𝑑 (𝑟), 0 ≤ 𝑟 ≤ 1, which satisfy the following requirements: 

1. �̃�𝑖  is a bounded monotonic increasing left continuous function, 

2. �̃�𝑑  is a bounded monotonic decreasing left continuous function, 

3. �̃�𝑖 ≤ �̃�𝑑  ,    0 ≤ 𝑟 ≤ 1 

and its parametric form is 

�̃�𝑖 (𝑟) = (𝑥0 − 𝜎 + 𝜎𝑟),     �̃�𝑑 (𝑟) = (𝑦0 + 𝛽 − 𝛽𝑟). 

Provided that, 𝑥0 =𝑦0  then �̃� is a triangular fuzzy number, and we write �̃� = (𝑥0  , 𝜎 , 𝛽). 

 Definition 3.2: The support of fuzzy number �̃� is defined as follows: 

Supp(�̃�)={𝑥  𝜇�̃�(𝑥)  > 0}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 

where {𝑥  𝜇�̃�(𝑥)  > 0}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is closure of set {𝑥  𝜇�̃�(𝑥)  > 0}. 
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 Definition 3.3: The addition and scalar multiplication of fuzzy numbers are defined by 

the extension principle and can be equivalently represented in [8,62,65] as follows. For 

arbitrary �̃� = (�̃�𝑖 , �̃�𝑑 ), �̃� =(�̃�𝑖 , �̃�𝑑 ) we define addition �̃� + �̃� and multiplication by scalar k > 

0 as:  

(�̃�𝑖 + �̃�𝑖 )(𝑟) = �̃�𝑖 (𝑟) + �̃�𝑖 (𝑟)  ,  (�̃�𝑑 + �̃�𝑑 )(𝑟) = �̃�𝑑 (𝑟) + �̃�𝑑 (𝑟) , 

(𝑘�̃� )
𝑖
(𝑟) = 𝑘�̃�𝑖 (𝑟) , (𝑘�̃� )

𝑑
(𝑟) = 𝑘�̃�𝑑 (𝑟) ,         (7) 

(𝑘�̃� )
𝑖
(𝑟) = 𝑘�̃�𝑖 (𝑟), (𝑘�̃� )

𝑑
(𝑟) = 𝑘�̃�𝑑 (𝑟). 

 To emphasis the collection of all fuzzy numbers with addition and multiplication as 

defined by (7) is denoted by E, which is a convex cone. The image (opposite) of �̃� = 

(𝑥0  , 𝑦0 , 𝜎 , 𝛽) can be defined by − �̃� =(−𝑥0  , −𝑦0  , 𝛽, 𝜎), see [26,65]. 

 

 Definition 3.4: (α-cut of fuzzy set) A α-cut of fuzzy set �̃� is α crisp subset of X which, 

denoted by: 

�̃�𝛼 = {x∈X|𝜇�̃�(x)  ≥ α} = [𝑥𝛼𝐿;𝑥𝛼𝑈] = [𝑋𝑚𝑖𝑛{x∈X|𝜇�̃�(x)  ≥α} 

    ;𝑋𝑚𝑎𝑥{x∈X|𝜇�̃�(x)  ≥α}]    (8) 

 The α-cuts of �̃� and �̃� are defined as: 

�̃�𝛼 = {x∈X|𝜇�̃�(x)  ≥ α} = [𝑥𝛼𝐿;𝑥𝛼𝑈],    (9) 

and 

�̃�𝛼={x∈X|𝜇�̃�(x)  ≥ α} = [𝑦𝛼𝐿;𝑦𝛼𝑈]     (10) 

 We can draw a membership function of triangular fuzzy number with concept of local 

α-cut . 

 Definition 3.5: The trapezoidal fuzzy number �̃� = (𝑥0  , 𝑦0 , 𝜎 , 𝛽) is reduced to a real 

number �̃� 𝑖𝑓 𝑥0  = 𝑦0 = 𝜎 = 𝛽 . Conversely, a real number u can be written as a trapezoidal 

fuzzy number �̃� = (𝑥, 𝑥, 𝑥, 𝑥). Similarly, the α-level �̃� = (𝑥0  , 𝑦0 , 𝜎 , 𝛽) can easily be 

determined as: 

[�̃�]𝛼 = [𝛼𝑥0 + (1 − 𝛼)𝜎, 𝛼𝑦0 + (1 − 𝛼)𝛽]  ,  (11) 
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where 𝛼 ∈ [0,1]. If x = 𝑥0 = 𝑦0, then �̃� = (𝑥0  , 𝜎 , 𝛽)  is called a triangular fuzzy number. 

 Definition 3.6: x real fuzzy number �̃� denoted by �̃� = (𝑥0  , 𝑦0 , 𝜎 , 𝛽, 𝑤) is described as 

any fuzzy subset of the real line  with a membership function 𝜇�̃�, which satisfies the  

following properties: 

 

𝜇�̃� is a semicontinuous mapping from  to the closed interval [0,w] (0 ≤ w ≤1), 

𝜇�̃�(x) = 0 for all x ∈ [-∞,σ], 

𝜇�̃� is increasing on [σ,𝑥0], 

𝜇�̃�(x) = w for all x ∈ [𝑥0,𝑦0], where w is a constant and 0 < w ≤ 1, 

𝜇�̃� is decreasing on [𝑦0,β], 

𝜇�̃�(x) = 0 for all x ∈ [β,∞], 

where 𝑥0, 𝑦0, 𝜎 and 𝛽 are real numbers. 

Unless elsewhere specified, it is assumed that �̃� is convex and bounded, i.e., −∞ < σ,   

β < ∞. If w = 1, �̃� is a normal fuzzy number, and if 0 < w < 1, �̃� is a nonnormal fuzzy number. 

 Definition 3.7: Suppose that we have two positive trapezoidal fuzzy numbers �̃� =

(𝑥𝑎, 𝑦𝑎, 𝜎𝑎, 𝛽𝑎) and �̃� = (𝑥𝑏 , 𝑦𝑏 , 𝜎𝑏 , 𝛽𝑏), then the arithmetic operations of these two 

trapezoidal fuzzy numbers are defined as follows: 

  �̃�(+)�̃� = (𝑥𝑎 + 𝑥𝑏 , 𝑦𝑎+𝑦𝑏 , 𝜎𝑎 + 𝜎𝑏 , 𝛽𝑎 + 𝛽𝑏 ), 

  �̃�(−)�̃� = (𝑥𝑎 − 𝑥𝑏 , 𝑦𝑎−𝑦𝑏 , 𝜎𝑎 − 𝜎𝑏 , 𝛽𝑎 − 𝛽𝑏 ), 

  �̃�(×)�̃� = (𝑥𝑎𝑥𝑏 , 𝑦𝑎𝑦𝑏 , 𝜎𝑎𝜎𝑏𝐴 , 𝛽𝑎𝛽𝑏 ), 

  𝑘�̃� = (𝑘𝑥𝑎 , 𝑘𝑦𝑎, 𝑘𝜎𝑎, 𝑘𝛽𝑎)  (∀ 𝑘 ∈ 
+), 

  𝑘�̃� = (𝑘𝑥𝑏 , 𝑘𝑦𝑏 , 𝑘𝜎𝑏 , 𝑘𝛽𝑏)  (∀ 𝑘 ∈ 
+), 

(�̃�)−1 = (
1

𝑦𝑎
,
1

𝑥𝑎
,
1

𝛽𝑎
,
1

𝜎𝑎
), (�̃�)−1 = (

1

𝑦𝑏
,
1

𝑥𝑏
,
1

𝛽𝑏
,
1

𝜎𝑏
), 

�̃�(÷)�̃� = �̃�(×)�̃�−1 = (
𝑥𝑎

𝑦𝑏
,
𝑦𝑎

𝑥𝑏
,
𝜎𝑎

𝛽𝑏
,
𝛽𝑎

𝜎𝑏
). 

 Definition 3.8: An alternative way of fuzzy arithmetic can be defined based on the 

interval of the arithmetic of α-level intervals. The interval arithmetic If �̃� and �̃� be two fuzzy 

numbers with α-level intervals �̃�𝛼 = [�̃�𝛼𝐿 , �̃�𝛼𝑈] and �̃�𝛼 = [�̃�𝛼𝐿 , �̃�𝛼𝑈] then the Definition 3.7 

can be achieved as follows: 

�̃�𝛼(+)�̃�𝛼=[�̃�𝛼𝐿 + �̃�𝛼𝐿 , �̃�𝛼𝑈 + �̃�𝛼𝑈], 

�̃�𝛼(−)�̃�𝛼=[�̃�𝛼𝐿 − �̃�𝛼𝐿 , �̃�𝛼𝑈 − �̃�𝛼𝑈], 
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�̃�𝛼(×)�̃�𝛼=[
𝑚𝑖𝑛{�̃�𝛼𝐿�̃�𝛼𝐿 , �̃�𝛼𝐿�̃�𝛼𝑈, �̃�𝛼𝑈�̃�𝛼𝐿 , �̃�𝛼𝑈�̃�𝛼𝑈},

𝑚𝑎𝑥{�̃�𝛼𝐿�̃�𝛼𝐿 , �̃�𝛼𝐿�̃�𝛼𝑈, �̃�𝛼𝑈�̃�𝛼𝐿 , �̃�𝛼𝑈�̃�𝛼𝑈}
], 

(�̃�𝛼)−1=[
1

�̃�𝛼𝐿
,
1

�̃�𝛼𝑈
], (�̃�𝛼)−1=[

1

�̃�𝛼𝐿
,
1

�̃�𝛼𝑈
], 

�̃�𝛼(÷)�̃�𝛼 = �̃�(×)�̃�−1 = �̃�𝛼(×)
1

�̃�𝛼
 . 

 Definition 3.9: The minimum t-norm is usually applied in fuzzy linear programming 

to assess a linear combination of fuzzy quantities. Therefore, a given set of trapezoidal fuzzy 

numbers �̃�𝑗 = (𝑥0𝑗 , 𝑦0𝑗, 𝜎𝑗, 𝛽𝑗)  (j = 1, 2, . . . , n) and 𝜆𝑗 ≥ 0, ∑ 𝜆𝑗 �̃�𝑗
𝑛
𝑗=1  are defined as follows: 

 

∑ 𝜆𝑗 �̃�𝑗
𝑛
𝑗=1 = (∑ 𝜆𝑗 𝑥0𝑗  ,

𝑛
𝑗=1 ∑ 𝜆𝑗 𝑦0𝑗  ,

𝑛
𝑗=1 ∑ 𝜆𝑗 𝜎𝑗  ,

𝑛
𝑗=1 ∑ 𝜆𝑗 𝛽𝑗  ,

𝑛
𝑗=1 ),   (12) 

 

where ∑ 𝜆𝑗 �̃�𝑗
𝑛
𝑗=1  denotes the combination 𝜆1 𝑥1̃   ⊕ 𝜆2 𝑥2 ̃ ⊕ …⊕  𝜆𝑛 𝑥�̃� . 

 A trapezoidal fuzzy number is widely used for solving practical problems. Hence, for 

the sake of simplicity and without loss of generality, we assume that all fuzzy numbers used 

throughout in this section are trapezoidal fuzzy numbers. 

 4. Fuzzy BCC Model 

 In this section, we propose an alternative fuzzy BCC model for evaluating the 

efficiency of a set of DMUs with fuzzy inputs and outputs derived from the α-level approach 

proposed by Saati et al. [52]. Let us consider n DMUs, each of which uses m different fuzzy 

inputs to generates a different fuzzy outputs. And the model (1) standard form of  BCC model 

for assessing DMUs is written with typical fuzzy  BCC model with fuzzy data can be 

expressed as: 

 

max𝑤𝑝 =  
∑ 𝑢𝑟
𝑠
𝑟=1 �̃�𝑟𝑝 − 𝑢0
∑ 𝑣𝑖
𝑚
 𝑖=1 �̃�𝑖𝑝

 

such that 

∑ 𝑢𝑟
𝑠
𝑟=1 �̃�𝑟𝑝−𝑢0

∑ 𝑣𝑖
𝑚
 𝑖=1 �̃�𝑖𝑗

≤ 1 (∀𝑗),     (13) 

𝑢𝑟 , 𝑣𝑖 ≥ 0 (∀𝑟, 𝑖). 
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Therefore, model (13) can be rewritten as follows: 

 

max𝑤𝑝 =  
∑ 𝑢𝑟
𝑠
𝑟=1 (𝑥𝑟𝑝  , 𝑦𝑟𝑝 , 𝜎𝑟𝑝 , 𝛽𝑟𝑝) − 𝑢0
∑ 𝑣𝑖
𝑚
 𝑖=1 (𝑥𝑖𝑝  , 𝑦𝑖𝑝 , 𝜎𝑖𝑝 , 𝛽𝑖𝑝)

 

such that 

∑ 𝑢𝑟
𝑠
𝑟=1 (𝑥𝑟𝑗  ,𝑦𝑟𝑗 ,𝜎𝑟𝑗 ,𝛽𝑟𝑗)−𝑢0

∑ 𝑣𝑖
𝑚
 𝑖=1 (𝑥𝑖𝑗  ,𝑦𝑖𝑗 ,𝜎𝑖𝑗 ,𝛽𝑖𝑗)

≤ 1 (∀𝑗),    (14) 

 𝑢𝑟 , 𝑣𝑖 ≥ 0 (∀𝑟, 𝑖). 

 

 The right-hand side of the first constraint in model (13)  must be equal to 1 because of 

the normalization of the efficiency scores of the DMUs. 

 For all DMUs as well as for the measures of both the lower and apper bound 

efficiencies [62]: 

Let 

Ej =
∑ urỹrj
s
r=1

∑ vi
m
i=1 x̃ij

− u0
∗  (j = 1, 2, . . . , n), 

Ej =
∑ ur[
s
r=1 ỹrj

L;ỹrj
U]

∑ vi
m
i=1 [x̃ij

L;x̃ij
U]
− u0

∗  = 
[∑ ur

s
r=1 ỹrj

L; ∑ ur
s
r=1  ỹrj

U
]

[∑ vi
m
i=1 x̃ij

L ; ∑ vi
m
i=1 x̃ij

U
]
− u0

∗  

      =[
∑ ur
s
r=1 ỹrj

L

∑ vi
m
i=1 x̃ij

U  − u0
∗ ,
∑ ur
s
r=1  ỹrj

U

∑ vi
m
i=1 x̃ij

L − u0
∗]   (15) 

 

should also be an interval number, which we denote by [Ej
𝐿 , Ej

𝑈] ⊆ (0,1] (j = 1, 2, . . . , n). 

Then 

∑ 𝑢𝑟
𝑠
𝑟=1  �̃�𝑟𝑗

𝑈

∑ 𝑣𝑖
𝑚
𝑖=1 �̃�𝑖𝑗

𝐿 ≤ 1  (j = 1, 2, . . . , n), 

∑ 𝑢𝑟
𝑠
𝑟=1 �̃�𝑟𝑗

𝐿

∑ 𝑣𝑖
𝑚
𝑖=1 �̃�𝑖𝑗

𝑈  > 0  (j = 1, 2, . . . , n). 

Hence the score of DMU0. 

  5. The Proposed Method 

 In this section, we develop the fuzzy BCC model in order to measure the crisp 

efficiency of each DMU under consideration for different α-values (α-levels), for all DMUs 

as well as for the measures of both the lower and upper bound efficiencies. 
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We can applying the α-cuts of fuzzy DEA, Using the equations (8-10) in model FBCC 

(13) the following model would be achieved: 

max𝐸𝛼 =  
∑ 𝑢𝑟
𝑠
𝑟=1 [�̃�𝑟𝑝

𝛼𝐿; �̃�𝑟𝑝
𝛼𝑈] − 𝑢0

∑ 𝑣𝑖
𝑚
 𝑖=1 [�̃�𝑖𝑝

𝛼𝐿; �̃�𝑖𝑝
𝛼𝑈]

 

such that 

∑ 𝑢𝑟[�̃�𝑟𝑗
𝛼𝐿;�̃�𝑟𝑗

𝛼𝑈]𝑠
𝑟=1 −𝑢0

∑ 𝑣𝑖
𝑚
 𝑖=1 [�̃�𝑖𝑗

𝛼𝐿;�̃�𝑖𝑗
𝛼𝑈]

≤ 1  (∀𝑗),     (16) 

𝑢𝑟 , 𝑣𝑖 ≥ 0  (∀𝑟, 𝑖). 

 

 Now interval DEA model is developed for measuring the upper and lower bounds of 

the best relative efficiency of each DMU with interval input and output data. 

max𝐸𝛼𝑈 =  ∑ 𝑢𝑟
𝑠
𝑟=1 [�̃�𝑟𝑝

𝛼𝑈] - 𝑢0 

such that 

∑ 𝑣𝑖
𝑚
 𝑖=1 [�̃�𝑖𝑝

𝛼𝐿]  = 1, 

∑ 𝑢𝑟
𝑠
𝑟=1 [�̃�𝑟𝑗

𝛼𝑈]−∑ 𝑣𝑖
𝑚
𝑖=1 [�̃�𝑖𝑗

𝛼𝐿] −  𝑢0 ≤ 0, 

∑ 𝑢𝑟
𝑠
𝑟=1 [�̃�𝑟𝑗

𝛼𝐿]−∑ 𝑣𝑖
𝑚
𝑖=1 [�̃�𝑖𝑗

𝛼𝑈] −  𝑢0  ≤ 0  (𝑗 = 1,2, … , 𝑛 ;  𝑗 ≠ 0),  (17) 

𝑢𝑟 , 𝑣𝑖 ≥ 0  (∀𝑟, 𝑖). 

 

max𝐸𝛼𝐿 =  ∑ 𝑢𝑟
𝑠
𝑟=1 [�̃�𝑟𝑝

𝛼𝐿] - 𝑢0 

such that 

∑ 𝑣𝑖
𝑚
 𝑖=1 [�̃�𝑖𝑝

𝛼𝑈]  = 1, 

∑ 𝑢𝑟
𝑠
𝑟=1 [�̃�𝑟𝑗

𝛼𝐿]−∑ 𝑣𝑖
𝑚
𝑖=1 [�̃�𝑖𝑗

𝛼𝑈] −  𝑢0 ≤ 0, 

∑ 𝑢𝑟
𝑠
𝑟=1 [�̃�𝑟𝑗

𝛼𝑈]−∑ 𝑣𝑖
𝑚
𝑖=1 [�̃�𝑖𝑗

𝛼𝐿] −  𝑢0 ≤ 0  (𝑗 = 1,2, … , 𝑛 ;  𝑗 ≠ 0),  (18) 

𝑢𝑟 , 𝑣𝑖 ≥ 0  (∀𝑟, 𝑖). 

 

 In model (17) and (18), the Trading and rotation variables: 

𝑢𝑟(𝑥𝑟𝑝  , 𝑦𝑟𝑝 , 𝜎𝑟𝑝 , 𝛽𝑟𝑝)
𝛼 = �̅�𝑟𝑝 (r = 1,2, . . . ,s ; p = 1,2, . . . ,n), 

𝑣𝑖(𝑥𝑖𝑝  , 𝑦𝑖𝑝 , 𝜎𝑖𝑝 , 𝛽𝑖𝑝)
𝛼 = �̅�𝑖𝑝  (i = 1,2, . . . ,m ; p = 1,2, . . . ,n), 

𝑢𝑟(𝑥𝑟𝑗  , 𝑦𝑟𝑗 , 𝜎𝑟𝑗 , 𝛽𝑟𝑗)
𝛼 = �̅�𝑟𝑗 (r = 1,2, . . . ,s ; j = 1,2, . . . ,n),   (19) 
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𝑣i(xij  , yij , σij , βij)
α = x̅ij (i = 1,2, . . . ,m ; j = 1,2, . . . ,n) 

are introduced to receive the following program: 

 

maxEαU =  ∑ y̅rp
Us

r=1  - u0 

such that 

∑ x̅ip 
Lm

 i=1  = 1, 

∑ y̅rj
Us

r=1 − ∑ x̅ij
L −  u0

m
i=1 ≤ 0, 

∑ y̅rj
Ls

r=1 − ∑ x̅ij
U −  u0

m
i=1  ≤ 0  (𝑗 = 1,2, … , 𝑛 ;  𝑗 ≠ 0)   (20) 

ur , 𝑣i ≥ 0  (∀r, i) , u0 uncertain. 

 

maxEαL =  ∑ y̅rp
Ls

r=1  - u0 

such that 

∑ x̅ip 
Um

 i=1  = 1, 

∑ y̅rj
Ls

r=1 − ∑ x̅ij
Um

i=1 −  u0  ≤ 0, 

∑ y̅rj
Us

r=1 − ∑ x̅ij
Lm

i=1 −  u0  ≤ 0  (𝑗 = 1,2, … , 𝑛 ;  𝑗 ≠ 0)   (21) 

ur , 𝑣i ≥ 0  (∀r, i) , u0 uncertain. 

 The fuzzy linear programming problem given by (20) and (21) is equivalent to a crisp 

parametric linear programming problem. Using the optimal value, we can determine the 

situation for returns to scale RTS when a DMUp is efficient. Similar to the conventional DEA 

model of Banker and Thrall [3]. 

 From (15) the lower and upper bounds of the efficiency score for a given α can be 

reduced as: 

𝐸𝑗=[
∑ 𝑢𝑟

∗𝑠
𝑟=1 [𝛼𝑥𝑟𝑝  +(1−𝛼)𝜎𝑟𝑝 ]

∑ 𝑣𝑖
∗𝑚

𝑖=1 [𝛼𝑦𝑖𝑝 +(1−𝛼)𝛽𝑖𝑝 ]
− 𝑢0

∗ ,
∑ 𝑢𝑟

∗𝑠
𝑟=1 [𝛼𝑦𝑟𝑝 +(1−𝛼)𝛽𝑟𝑝]

∑ 𝑣𝑖
∗𝑚

𝑖=1 [𝛼𝑥𝑖𝑝   +(1−𝛼)𝜎𝑖𝑝 ]
− 𝑢0

∗]. 

 We can applying the α-level of fuzzy DEA. Using the equations (11) in model FBCC 

(13) the following model would be achieved: 
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max𝑤𝑝 =  
∑ 𝑢𝑟
𝑠
𝑟=1 [αxrp  + (1 − α)σrp , αyrp + (1 − α)βrp] − 𝑢0

∑ 𝑣𝑖
𝑚
 𝑖=1 [αxip  + (1 − α)σip , αyip + (1 − α)βip]

 

such that 

∑ 𝑢𝑟
𝑠
𝑟=1 [𝛼𝑥𝑟𝑗  +(1−𝛼)𝜎𝑟𝑗 ,𝛼𝑦𝑟𝑗 +(1−𝛼)𝛽𝑟𝑗]−𝑢0

∑ 𝑣𝑖
𝑚
 𝑖=1 [𝛼𝑥𝑖𝑗  +   (1−𝛼)𝜎𝑖𝑗 ,𝛼𝑦𝑖𝑗 +(1−𝛼)𝛽𝑖𝑗]

≤ 1  (∀𝑗),    (22) 

ur , 𝑣i ≥ 0  (∀r, i) , u0 uncertain, 

 

where �̃�𝑟𝑗 = (𝑥𝑟𝑗  , 𝑦𝑟𝑗 , 𝜎𝑟𝑗 , 𝛽𝑟𝑗) and �̃�𝑖𝑗 = (𝑥𝑖𝑗  , 𝑦𝑖𝑗 , 𝜎𝑖𝑗 , 𝛽𝑖𝑗) are the rth fuzzy output and ith 

fuzzy input values of the jth DMU, respectively, are characterized as trapezoidal fuzzy 

numbers. 

 Model (22) is an interval programming model that can be solved by standard 

optimization methods. Hence, we transform the interval model (22) into a programming 

model using the following interval alteration variables: 

[αxrp  + (1 − α)σrp , αyrp + (1 − α)βrp]=ŷrp  (∀r , p) 

[αxip   + (1 − α)σip , αyip + (1 − α)βip ]=x̂ip  (∀i , p) 

[αxrj   + (1 − α)σrj , αyrj  + (1 − α)βrj] = ŷrj  (∀r , j)    (23) 

[αxij    + (1 − α)σij , αyij  +  (1 − α)βij] = x̂ij  (∀i , j) . 

 The substitutions of the above interval alteration variables in model (22) will result in 

the following programming model: 

max𝑤𝑝 =  
∑ 𝑢𝑟
𝑠
𝑟=1 ŷrp − 𝑢0
∑ 𝑣𝑖
𝑚
 𝑖=1 x̂ip

 

such that 

∑ 𝑢𝑟ŷrj
𝑠
𝑟=1 −𝑢0

∑ 𝑣𝑖
𝑚
 𝑖=1 x̂ij

≤ 1  (∀𝑗),     (24) 

𝑢𝑟 , 𝑣𝑖 ≥ 0  (∀𝑟 , 𝑖). 

 

 In model (24), the alternation variables as: 

𝑢𝑟ŷrp = �̅�𝑟𝑝(r = 1, 2, . . . , s, p = 1, 2, . . . , n), 

𝑣𝑖x̂ip = �̅�𝑖𝑝 (i = 1, 2, . . . , m, p = 1, 2, . . . , n), 

𝑢rŷrj = �̅�𝑟𝑗(r = 1, 2, . . . , s, j = 1, 2, . . . , n),   (25) 
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𝑣𝑖x̂ij = �̅�𝑖𝑗 (𝑖 = 1, 2, . . . , 𝑚 ;  j = 1, 2, . . . , 𝑛) 

are introduced to receive the following program: 

max∑�̅�𝑟𝑝

s

r=1

−  𝑢0 

such that 

∑ �̅�𝑖𝑝
m
 i=1 = 1, 

∑ �̅�𝑟𝑗
s
r=1  − ∑ �̅�𝑖𝑗

m
i=1 −  𝑢0 ≤ 0  (𝑗 ≠ 𝑝),    (26) 

𝑢𝑟(αxrj   + (1 − α)σrj)  ≤ �̅�𝑟𝑗 ≤ 𝑢𝑟(αyrj  + (1 − α)βrj)  (∀r , j), 

𝑣𝑖(αxij    + (1 − α)σij)  ≤ �̅�𝑖𝑗  ≤ 𝑣𝑖(αyij  + (1 − α)βij)  (∀i , j), 

ur , vi ≥ 0  (∀r , i) ,  u0 uncertain. 

 Model (26) is equivalent to a intervel programming model with α ∈ [0,1]. Therefore, 

analyzing the efficiency of DMUs with the proposed  method, for a set of n different values of 

α, e.g. αi (i = 1,2, ... ,n). Therefore, it will be necessary to obtain an integrated efficiency score 

for DMUs to rank them. The fuzzy linear programming problem given by (26) is equivalent to 

a crisp intervel linear programming problem. Using the optimal value, we can determine the 

situation for returns to scale RTS for BCC and CCR when a DMUp is efficient. Similar to the 

conventional DEA model of Banker and Thrall [3]. 

 From (15) the intervel of the efficiency score for a given α can be reduced as: 

Ej=[

∑ ur
∗s

r=1 [αxrj   +(1−α)σrj]

∑ vi
∗m

i=1 [αyij  + (1−α)βij]
− u0

∗ ,
∑ ur

∗s
r=1 [αxrj   +(1−α)σrj]

∑ vi
∗m

i=1 [αxij    +(1−α)σij]
− u0   

∗

,
∑ ur

∗s
r=1 [αyrj  +(1−α)βrj]

∑ vi
∗m

i=1 [αyij  + (1−α)βij]
− u0

∗ ,
∑ ur

∗s
r=1 [αyrj  +(1−α)βrj]

∑ vi
∗m

i=1 [αxij    +(1−α)σij]
− u0

∗
]. 

 6. Numerical Examples 

 In this section, we use two numerical examples, Saati et. al. [53] and Guo and Tanaka 

[15] are solved by the proposed method and the results are compared with previously 

presented methods. 

 Example 1. Consider 4 DMUs with inputs and outputs which are presented in Table 1, 

this problem results are compared with two previously presented Kao and Liu [36] and 

Razavi, et. al. [51]. 
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Table 1: Inputs and outputs of 4 DMUs. 

DMU Input α-cut Output α-cut 

A (11,12,14) [11+ α,14-2 α] 10 [10,10] 

B 30 [30,30] (12,13,14,16) [12+ α,16-2 α] 

C 40 [40,40] 11 [11,11] 

D (45,47,52,55) [45+2 α,55-3 α] (12,15,19,22) [12+3 α,22-3 α] 

 

 Considering the DMU D, by FBCC models (20,21) for upper and lower objective 

models are solved: 

max𝐸𝛼𝑈(𝐷) = 𝑚𝑎𝑥  (22 − 3α) 𝑢1 − 𝑢0 

such that 

(45 + 2α)𝑣1 = 1 

10𝑢1 − (11 + α)𝑣1 − 𝑢0  ≤ 0 

(16 − 2α)𝑢1 − 30𝑣1 − 𝑢0  ≤ 0 

11𝑢1 − 40 𝑣1 − 𝑢0 ≤ 0 

(22 − 3α)𝑢1 − (45 + 2α)𝑣1 − 𝑢0  ≤ 0 

10𝑢1 − (14 − 2𝛼)𝑣1 − 𝑢0  ≤ 0 

(12 + α)𝑢1 − 30𝑣1 − 𝑢0  ≤ 0 

11𝑢1 − 40 𝑣1 − 𝑢0 ≤ 0 

(22 − 3α)𝑢1 − (55 + 3α)𝑣1 − 𝑢0 ≤ 0 

𝑢1 , 𝑣1 ≥ 0 , 𝑢0 ∶ 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 . 

 

max𝐸𝛼𝐿(𝐷) = 𝑚𝑎𝑥  (12 + 3α) 𝑢1 − 𝑢0 

such that 

(55 + 3α)𝑣1 = 1 

10𝑢1 − (14 − 2𝛼)𝑣1 − 𝑢0  ≤ 0 

(12 + α)𝑢1 − 30𝑣1 − 𝑢0  ≤ 0 

11𝑢1 − 40 𝑣1 − 𝑢0 ≤ 0 

(22 − 3α)𝑢1 − (55 + 3α)𝑣1 − 𝑢0 ≤ 0 

10𝑢1 − (11 + α)𝑣1 − 𝑢0  ≤ 0 

(16 − 2α)𝑢1 − 30𝑣1 − 𝑢0  ≤ 0 
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11𝑢1 − 40 𝑣1 − 𝑢0 ≤ 0 

(22 − 3α)𝑢1 − (45 + 2α)𝑣1 − 𝑢0  ≤ 0 

𝑢1 , 𝑣1 ≥ 0 , 𝑢0 ∶ 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 . 

 The results for these models are solved for different α-values in Table 2. 

 

Table 2: The α-cuts of the efficiency at four  α-values on the proposed method and two previously presented. 

 A[EαL, EαU] B[EαL, EαU] 

Α 
Proposed 

BCC 
Kao and Liu Razavi et.al. 

Proposed 

BCC 
Kao and Liu 

Razavi and 

et.al. 

0.0 [0.98,1.0] [1.0,1.0] 0.9497 [0.72,1.0] [0.71,1.0] [0.71,0.95] 

0.5 [0.98,1.0] [1.0,1.0] 0.9725 [0.80,1.0] [0.79,1.0] [0.79,0.95] 

0.75 [0.98,1.0] [1.0,1.0] 0.9873 [0.82,1.0] [0.83,1.0] [0.83,0.95] 

1.0 [0.98,1.0] [1.0,1.0] 1.0 [0.90,1.0] [0.88,1.0] [0.88,0.95] 

 

 C[EαL, EαU] D[EαL, EαU] 

Α 
Proposed 

BCC 
Kao and Liu 

Razavi and 

et.al. 

Proposed 

BCC 
Kao and Liu 

Razavi and 

et.al. 

0.0 [0.58,1.0] [0.54,0.91] 0.5436 [0.72,1.0] [0.74,1.0] [0.54,1.0] 

0.5 [0.61,1.0] [0.58,0.85] 0.5890 [0.79,1.0] [0.89,1.0] [0.65,1.0] 

0.75 [0.64,1.0] [0.60,0.82] 0.6086 [0.91,1.0] [0.96,1.0] [0.70,1.0] 

1.0 [0.70,1.0] [0.63,0.79] 0.6395 [0.96,1.0] [1.0,1.0] [0.78,1.0] 

 

Table 3: The results for model (20,21) and the ranking of each DMU for different α-levels. 

 Interval Score 

 α = 0 Rank α = 0.5 Rank α = 0.75 Rank α = 1.0 Rank 

A [0.98,1.0] 1 [0.98,1.0] 1 [0.98,1.0] 1 [0.98,1.0] 1 

B [0.72,1.0] 2 [0.80,1.0] 2 [0.82,1.0] 3 [0.90,1.0] 3 

C [0.58,1.0] 4 [0.61,1.0] 4 [0.64,1.0] 4 [0.70,1.0] 4 

D [0.72,1.0] 3 [0.79,1.0] 3 [0.91,1.0] 2 [0.96,1.0] 2 
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 Example 2. Consider 5 DMUs with  2 inputs and  2 outputs which are presented in 

Table 4, this problem results are compared with six previously presented Guo and Tanaka 

[15], Lertworasirikul et al. [41,42], Saati et al. [52] and Majid et. al. [45]. 

Table 4: 2 Inputs and 2 outputs of 5 DMUs. 

DMU Input 1 Input 2 Output 1 Output 2 

A (3.5,4,4.5) (1.9,2.1,2.3) (2.4,2.6,2.8) (3.8,4.1,4.4) 

B (2.9,2.9,2.9) (1.4,1.5,1.6) (2.2,2.2,2.2) (3.3,3.5,3.7) 

C (4.4,4.9,5.4) (2.2,2.6,3.2) (2.7,3.2,3.7) (4.3,5.1,5.9) 

D (3.4,4.1,4.8) (2.2,2.3,2.4) (2.5,2.9,3.3) (5.5,5.7,5.9) 

E (5.9,6.5,7.1) (3.6,4.1,4.6) (4.4,5.1,5.8) (6.5,7.4,8.3) 

 

 Considering the DMU D, by FBCC model (26) for intervel of the objective models are 

solved: 

max𝐸𝛼(𝐴) = 𝑚𝑎𝑥  (�̅�11 + �̅�21) − 𝑢0 

such that 

�̅�11 + �̅�21 = 1  

(�̅�11 + �̅�21) − (�̅�11 + �̅�21 ) − 𝑢0 ≤ 0 

(�̅�12 + �̅�22) − (�̅�12 + �̅�22 ) − 𝑢0 ≤ 0 

(�̅�13 + �̅�23) − (�̅�13 + �̅�23 ) − 𝑢0 ≤ 0 

(�̅�14 + �̅�24) − (�̅�14 + �̅�24 ) − 𝑢0 ≤ 0 

(�̅�15 + �̅�25) − (�̅�15 + �̅�25 ) − 𝑢0 ≤ 0 

 

 

𝑢1(α(2.4)  + (1 − α)2.6)  ≤ �̅�11 ≤ 𝑢1(α(2.4)  + (1 − α)2.8) 

𝑢1(α(2.2)  + (1 − α)2.2)  ≤ �̅�12 ≤ 𝑢1(α(2.2)  + (1 − α)2.2) 

𝑢1(α(2.7)  + (1 − α)3.2)  ≤ �̅�13 ≤ 𝑢1(α(2.7)  + (1 − α)3.7) 

𝑢1(α(2.5)  + (1 − α)2.9)  ≤ �̅�14 ≤ 𝑢1(α(2.5)  + (1 − α)3.3) 

𝑢1(α(4.4)  + (1 − α)5.1)  ≤ �̅�15 ≤ 𝑢1(α(4.4)  + (1 − α)5.8) 
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𝑢2(α(3.8)  + (1 − α)4.1)  ≤ �̅�11 ≤ 𝑢2(α(3.8)  + (1 − α)4.4) 

𝑢2(α(3.3)  + (1 − α)3.5. )  ≤ �̅�12 ≤ 𝑢2(α(3.3)  + (1 − α)3.7) 

𝑢2(α(4.3)  + (1 − α)5.1)  ≤ �̅�13 ≤ 𝑢2(α(4.3)  + (1 − α)5.9) 

𝑢2(α(5.5)  + (1 − α)5.7)  ≤ �̅�14 ≤ 𝑢2(α(5.5)  + (1 − α)5.9) 

𝑢2(α(6.5)  + (1 − α)7.4)  ≤ �̅�15 ≤ 𝑢2(α(6.5)  + (1 − α)8.3) 

 

 

𝑣1(α(3.5)   + (1 − α)4.0 ≤ �̅�11  ≤ 𝑣1(α(3.5)  + (1 − α)4.5)  

𝑣1(α(2.9)   + (1 − α)2.9 ≤ �̅�12  ≤ 𝑣1(α(2.9)  + (1 − α)2.9)  

𝑣1(α(4.4)   + (1 − α)4.9 ≤ �̅�13  ≤ 𝑣1(α(4.4)  + (1 − α)5.4)  

𝑣1(α(3.4)   + (1 − α)4.1 ≤ �̅�14  ≤ 𝑣1(α(3.4)  + (1 − α)4.8)  

𝑣1(α(5.9)   + (1 − α)6.5 ≤ �̅�15  ≤ 𝑣1(α(5.9)  + (1 − α)7.1)  

 

 

𝑣2(α(1.9)   + (1 − α)2.1 ≤ �̅�11  ≤ 𝑣2(α(1.9)  + (1 − α)2.3)  

𝑣2(α(1.4)   + (1 − α)1.5 ≤ �̅�12  ≤ 𝑣2(α(1.4)  + (1 − α)1.6)  

𝑣2(α(2.2)   + (1 − α)2.6 ≤ �̅�13  ≤ 𝑣2(α(2.2)  + (1 − α)3.0)  

𝑣2(α(2.2)   + (1 − α)2.3 ≤ �̅�14  ≤ 𝑣2(α(2.2)  + (1 − α)2.4)  

𝑣2(α(3.6)   + (1 − α)4.1 ≤ �̅�15  ≤ 𝑣2(α(3.6)  + (1 − α)4.6)  

𝑢1 , 𝑣1 , 𝑢2 , 𝑣2 ≥ 0 , 𝑢0 ∶ 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 . 

 

max𝐸𝛼(𝐵) = 𝑚𝑎𝑥  (�̅�12 + �̅�22) − 𝑢0 

such that 

�̅�12 + �̅�22 = 1  

(�̅�11 + �̅�21) − (�̅�11 + �̅�21 ) − 𝑢0 ≤ 0 

(�̅�12 + �̅�22) − (�̅�12 + �̅�22 ) − 𝑢0 ≤ 0 

(�̅�13 + �̅�23) − (�̅�13 + �̅�23 ) − 𝑢0 ≤ 0 

(�̅�14 + �̅�24) − (�̅�14 + �̅�24 ) − 𝑢0 ≤ 0 

(�̅�15 + �̅�25) − (�̅�15 + �̅�25 ) − 𝑢0 ≤ 0 
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𝑢1(α(2.4)  + (1 − α)2.6)  ≤ �̅�11 ≤ 𝑢1(α(2.4)  + (1 − α)2.8) 

𝑢1(α(2.2)  + (1 − α)2.2)  ≤ �̅�12 ≤ 𝑢1(α(2.2)  + (1 − α)2.2) 

𝑢1(α(2.7)  + (1 − α)3.2)  ≤ �̅�13 ≤ 𝑢1(α(2.7)  + (1 − α)3.7) 

𝑢1(α(2.5)  + (1 − α)2.9)  ≤ �̅�14 ≤ 𝑢1(α(2.5)  + (1 − α)3.3) 

𝑢1(α(4.4)  + (1 − α)5.1)  ≤ �̅�15 ≤ 𝑢1(α(4.4)  + (1 − α)5.8) 

 

 

𝑢2(α(3.8)  + (1 − α)4.1)  ≤ �̅�11 ≤ 𝑢2(α(3.8)  + (1 − α)4.4) 

𝑢2(α(3.3)  + (1 − α)3.5. )  ≤ �̅�12 ≤ 𝑢2(α(3.3)  + (1 − α)3.7) 

𝑢2(α(4.3)  + (1 − α)5.1)  ≤ �̅�13 ≤ 𝑢2(α(4.3)  + (1 − α)5.9) 

𝑢2(α(5.5)  + (1 − α)5.7)  ≤ �̅�14 ≤ 𝑢2(α(5.5)  + (1 − α)5.9) 

𝑢2(α(6.5)  + (1 − α)7.4)  ≤ �̅�15 ≤ 𝑢2(α(6.5)  + (1 − α)8.3) 

 

 

𝑣1(α(3.5)   + (1 − α)4.0 ≤ �̅�11  ≤ 𝑣1(α(3.5)  + (1 − α)4.5)  

𝑣1(α(2.9)   + (1 − α)2.9 ≤ �̅�12  ≤ 𝑣1(α(2.9)  + (1 − α)2.9)  

𝑣1(α(4.4)   + (1 − α)4.9 ≤ �̅�13  ≤ 𝑣1(α(4.4)  + (1 − α)5.4)  

𝑣1(α(3.4)   + (1 − α)4.1 ≤ �̅�14  ≤ 𝑣1(α(3.4)  + (1 − α)4.8)  

𝑣1(α(5.9)   + (1 − α)6.5 ≤ �̅�15  ≤ 𝑣1(α(5.9)  + (1 − α)7.1)  

 

 

𝑣2(α(1.9)   + (1 − α)2.1 ≤ �̅�11  ≤ 𝑣2(α(1.9)  + (1 − α)2.3)  

𝑣2(α(1.4)   + (1 − α)1.5 ≤ �̅�12  ≤ 𝑣2(α(1.4)  + (1 − α)1.6)  

𝑣2(α(2.2)   + (1 − α)2.6 ≤ �̅�13  ≤ 𝑣2(α(2.2)  + (1 − α)3.0)  

𝑣2(α(2.2)   + (1 − α)2.3 ≤ �̅�14  ≤ 𝑣2(α(2.2)  + (1 − α)2.4)  

𝑣2(α(3.6)   + (1 − α)4.1 ≤ �̅�15  ≤ 𝑣2(α(3.6)  + (1 − α)4.6)  

𝑢1 , 𝑣1 , 𝑢2 , 𝑣2 ≥ 0 , 𝑢0 ∶ 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 . 

 

The results for these model are solved for the different α-value in Table 5. 



 

   

  

 
80 

 

 

Table 5: The efficiency at four  α-values on the proposed method and six previously presented. 

Method α-level 
DMUs 

A B C D E 

Guo and Tanaka 

(2001) 

CCR model 

0.00 (0.66,0.81,0.99) (0.88,0.98,1.09) (0.60,0.82,1.12) (0.71,0.3,1.25) (0.61,0.79,1.02) 

0.50 (0.75,0.83,0.92) (0.94,0.97,1.00) (0.12,0.83,0.14) (0.85,0.97,1.12) (0.72,0.82,0.93) 

0.75 (0.77,0.81,0.99) (0.80,0.98,1.09) (0.22,0.82,0.30) (0.71,0.93,1.25) (0.61,0.79,1.02) 

1.00 (0.85,0.85,0.94) (1.00,1.00,1.00) (0.86,0.86,0.86) (1.00,1.00,1.00) (1.00,1.00,1.00) 

Lertworasirikul 

et.al. (2003a)CCR 

model 

0.00 1.107 1.238 1.276 1.520 1.296 

0.50 0.963 1.112 1.035 1.258 1.159 

0.75 0.904 1.055 0.932 1.131 1.095 

1.00 1.000 0.855 1.000 0.861 1.000 

Saati et al. (2002) 

CCR model 

0.00 1.000 1.000 1.000 1.000 1.000 

0.50 0.954 1.000 1.000 1.000 1.000 

0.75 0.901 1.000 0.929 1.000 1.000 

1.00 0.855 1.000 0.862 1.000 1.000 

Lertworasirikul et 

al. 

(2003b) 

BCC model 

0.00 1.299 1.247 1.699 1.692 ∞ 

0.50 1.062 1.119 1.243 1.300 ∞ 

0.75 0.969 1.059 1.074 1.142 ∞ 

1.00 0.889 1.000 0.935 1.000 1.000 

Majid et.al. 

(2011)CCR model 

0.00 0.915 1.000 0.948 1.000 0.991 

0.50 0.909 1.000 0.945 1.000 0.991 

0.75 0.903 1.000 0.941 1.000 0.840 

1.00 1.000 1.000 1.000 1.000 1.000 

Marbini et.al 

(2012)BCC model 

0.00 1.000 1.000 1.000 1.000 1.000 

0.50 1.000 1.000 1.000 1.000 1.000 

0.75 0.982 1.000 1.000 1.000 1.000 

1.00 0.918 1.000 0.960 1.000 1.000 

Proposed 

0.00 (0.71,0.85,0.99) 1.000 (0.60,0.80,1.00) (0.70,0.85,1.00) 1.000 

0.50 (0.76,0.86,0.96) 1.000 (0.62,0.83,0.94) (0.85,0.97,1.12) 1.000 

0.75 (0.76,0.87,0.98) 1.000 (0.62,0.85,0.98) (0.71,0.93,1.25) 1.000 

1.00 (0.83,0.89,0.95) 1.000 (0.86,0.86,0.86) (1.00,1.00,1.00) 1.000 
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Table 6: The results for model (26) and the ranking of each DMU for different α levels. 

 Interval Score 

 α = 0 Rank α = 0.5 Rank α = 0.75 Rank α = 1.0 Rank 

A (0.71,0.85,0.99) 3 (0.76,0.86,0.96) 4 (0.76,0.87,0.98) 3 (0.83,0.89,0.95) 5 

B 1 1 1 1 1 1 1 1 

C (0.60,0.80,1.00) 5 (0.62,0.83,0.94) 5 (0.62,0.85,0.98) 5 (0.86,0.86,0.86) 4 

D (0.70,0.85,1.00) 4 (0.85,0.97,1.12) 3 (0.71,0.93,1.25) 4 (1.00,1.00,1.00) 3 

E 1 2 1 2 1 2 1 2 

 

 7. Conclusions 

 The development of fuzzy DEA with imprecise and ambiguous data has evolved the 

scope of its application to efficienct measurement in real-life problems. In the real world there 

are many problems which have fuzzy parameters. In this study, we have developed a fuzzy 

DEA framework  and guideline with a CCR and BCC model and used an α-cut approachto 

convert the fuzzy BCC model into an paramtric programming model. Instead of comparing 

the equality (or inequality) of these two intervals, we  have defined in a variable in the period 

to meet our limitations and to maximize the efficiency value. We did present a numerical 

example to show the similarities and dissimilarities between our solution and the solutions 

extracted from two fuzzy DEA methods in other ways. 

 We use these models (20, 21, 26) proposed in this study, in order to find the efficiencies 

of the DMUs presented in table mentioned as 1 and 4. On top of that, the optimal values of  

u0 for the successful DMUs are reported in Table 2 and 5 to look for theefficiency. For 

example, DMU B and C are successful when α is equal to 0, 0. 5, 0.75 and 1.0. Also our 

model can be used when the number of DMUs is less used than the blended number of inputs 

and outputs, and can be used full fuzzy numbers. This model can be extended to the other 

subject areas and types of DEA. 
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