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ABSTRACT 

 
This paper presents solution comparisons of benchmark functions by using stochastic multi-parameters 

divergence (SMDO) method with different distribution functions. Using benchmark functions is an 
important method in measuring the effectiveness of algorithms. Because benchmark functions are used by 

all algorithm producers while trying their algorithms and this provides a good tool for the others to compare 

their algorithms with similar procedures. Benchmark functions are used in this paper for the main purpose 
of analyzing randomization process. It is known that distribution functions take place a vital role in getting 

random numbers. These random numbers are used in stochastic methods through specifying step size. It 

is believed that a suitable random number acquisition process can support the search processes of 
algorithms. In this study the effects of distribution functions on benchmark functions are analyzed. For 

this purpose, a program is developed with MATLAB. The comparisons via the help of this program is 

shown in tabular form. The results are analyzed from the viewpoint of whether developing the 
randomization process makes contribution to problem solving power of algorithms. In this study SMDO 

algorithm is analyzed with different distribution functions by using different benchmark functions. In 

addition, in the study, a useful friend-friendly Matlab toolbox is proposed in which SMDO algorithm can 
be tested over different benchmark functions according to different distribution functions. 

(https://www.mathworks.com/matlabcentral/fileexchange/75044-smdo-with-distribution-function-for-
benchmarking) 
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Introduction 

Engineering problems can be solved by stochastic 
or analytical methods depending on the nature of 
the problem. Analytical methods are used if the 
mathematical model and constraints of the related 
problem are fully known. [1], [2]. However, if the 
problem model and its constraints are not known, 
numeric methods are used. [3], [4]. In addition, in 
some cases, it is necessary to use semi-analytical 
and semi-numerical methods, which include both 
analytical and numerical structures. [5], [6].  

However, the real world engineering problems 
generally cannot be solved with pure analytic 
methods. Because sometimes the known 
parameters are inadequate or there can be 
distortions which change the dynamics of the 
problem. Numerical methods search the solution 
space of the problem with a disciplined way.  

Numerical optimization algorithms can actually be 
examined in two groups. These are stochastic and 
deterministic methods. There are many subtitles in 
the related main headings. In general, stochastic 
and metaheuristic methods are preferred for solving 
engineering problems in the literature. Because 
algorithms in this structure can easily solve the 
uncertainties in engineering problems. Fire fly [7], 
flower pollination [8], forest optimization [9] can 
be shown as example for the stochastic 
optimization algorithms. Tabu search [10], [11] bat 
inspired [12], harmony search [13] can be shown as 
example for the metaheuristic optimization 
algorithms. Especially in recent years, an extremely 
important increase has been in the use of algorithms 
inspired by nature. [14], [15]. 

However, instead of recommending new nature-
inspired algorithms, analytical approaches must be 
found to mathematically improve algorithms which 
are inspired from nature. Because there can be an 
infinite approximate method can have inspired from 
our living environment world. Therefore, in 
addition to proposing new algorithms, structures 
that will improve the performance of existing 
numerical, stochastic optimization algorithms 
should be proposed. Thus, the SMDO method, 
which is one of the numerical methods, is in our 
focus to analyze in this paper with using different 
distribution functions. It is a powerful algorithm 

whose adequacy is proven in real engineering 
problems.  

As it is known, SMDO algorithm makes random 
movements according to uniform distribution while 
scanning parameter vector spaces. The uniform 
distribution performs movements by using relative 
random values between [0-1]. At this point, there 
are many distribution functions in the literature. 
These distribution functions, which are analytic 
approaches with different mathematical 
backgrounds, can derive values such as uniform 
distribution. In this paper the SMDO method is 
selected to analyze this process. In the numerical 
optimization algorithms, it is well known that the 
random steps take a very important place in the 
process. But this randomization generally is made 
by uniform distribution. By analyzing this aspect of 
the algorithms, it is hoped that it can be opened new 
doors for us to strengthen our algorithms. It is 
believed that this issue can be realized by using 
appropriate distribution function in the algorithm. 
In this paper different distribution functions are 
analyzed with SMDO algorithm to make a clear 
perspective from this view. It is hoped that by 
specifying a relation between the algorithm and the 
distribution function will help in the process of 
making more analytical and strong random steps. In 
addition, a user-friendly Matlab toolbox where 
SMDO algorithm can be tested over different 
benchmark problems according to different 
distribution functions has been proposed in the 
study. 

The rest of the paper is organized as follows; 
Section 2 presents the benchmark functions that we 
will use in this analysis. In Section 3; SMDO 
method is briefly explained and besides this its 
usage details are explained. In section 4, the 
solutions of different methods with different 
benchmark functions by using uniform distribution 
function are compared. In section 5, SMDO method 
is tried with different distribution functions by the 
help of different benchmark functions. In Section 6, 
SMDO Toolbox Program is introduced by the help 
of which SMDO can be tried with different 
benchmark functions and with different distribution 
functions.  And finally in Section 7 includes the 
conclusion. 
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The Characteristics of Distribution Functions 

As it is stated before, in this study the 
randomization process is aimed to be analyzed. At 
this point the random number acquisition process of 
the algorithms takes an important place. Generally, 
the random numbers are acquired through uniform 
distribution in stochastic algorithms. It is known 
that the characteristics of the random number 
acquisition process is specified by the used 
distribution function. To analyze this effect, four 
different distribution function is tried on SMDO 
algorithm. These are normal distribution, beta 
distribution, binomial distribution and extreme 
value distribution. The characteristics of these 
distribution functions are described below [16]. 

The normal distribution function is also called the 
Gaussian distribution function and it is a two-
parameter family of curves. Normal distribution 
function is used for central limit theorem.[17]. 
Mathematical formulation of normal distribution 
probability density function (pdf) is given as 
follows: 

y = f(x|μ,σ) = (
 2

1
e

2

2

2

)(



−− x

), for xR            (1) 

where ‘μ’ stands for mean of the distribution; ‘σ’ 
stands for standard deviation of the distribution. 
The standard normal distribution function has zero 
mean and unit standard deviation. 

Beta distribution function is a family of non-zero 
curves defined between 0 and 1. Mathematical 
formulation of beta distribution probability density 
function (pdf) is given as follows: 

y=f(x|a,b) = 
),a(

1

bB
xa-1(1−x)b-1 I  1,0 (x)         (2) 

where ‘a’ is the first shape parameter; ‘b’ is the 

second shape parameter. These parameters only 

affect the shape of the distribution and they do not 

have the effect of shifting or the stretching the 

distribution. In this formula B(·) is the Beta 

function and I  1,0 (x) stands for indicator function. 

This indicator function provides the nonzero 

probability between the range (0,1). [18].  

Binomial distribution is the generalized version of 
Bernoulli distribution and it is a two-parameter 
family of curves. [19]. Mathematical formulation of 
binomial distribution probability density function 
(pdf) is given as follows: 

y=f(x|N,p) = 









x

N  px(1−p)N-x ; x=0,1,2,..,N        (3)               

where ‘x’ is the number of successes in ‘N’ trials of 

a Bernoulli process with probability of success ‘p’. 

So ‘N’ stands for number of trials and ‘p’ stands for 

the probability of success in a single trial. 

The extreme value distribution is generally used to 
model the largest and smallest value in randomly 
distributed sets. [20]. Mathematical formulation of 
extreme value distribution probability density 
function (pdf) is given as follows: 

y=f(x|μ,σ)=σ-1exp(


−x
)exp(-exp(



−x
))      (4) 

In this formula ‘μ’ stands for the location parameter 
and ‘σ’ stands for the scale parameter. This form of 
probability density function can be used for 
modeling the minimum value. Negative of the 
original values can be used for modeling the 
maximum value.  

 

Review of the SMDO Method and Usage of 
Distribution Function 

SMDO algorithm is a stochastic optimization 
algorithm that works with the set and trial 
mechanism [21], [22]. In Figure 1 the pseudo code 
of the SMDO algorithm is given to visualize the 
algorithm. 

The SMDO algorithm was first used in the 
integer-order controller design relative to the 
fractional-order reference model [21]. The SMDO 
algorithm was designed for fractional-order PID 
simulation models using a two-stage master slave 
approach. [22].  Later, SMDO algorithm was 
developed and fractional order controller design 
was realized for main and yaw rotors of TRMS 
system. [23]. In order to increase control 
performance by changing control structures in the 
system, many control structures with two degrees 
of freedom have been firstly fractional ordered and 
then fractional-order controllers are designed with 
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SMDO algorithm to these structures [24], [25]. A 
fractional order model structure was created by 
using the simple circuit model approach for the 
receptor ligands. [26]. In fact, a fractional order PID 
controller is designed for a basic simulation model 
to see the effect of some different distribution 
functions with the SMDO algorithm [27]. In this 
study, many different distribution functions were 
used for many different benchmark functions. 

 

Fig. 1. Pseudo code of SMDO Algorithm  

 

Comparisons SMDO Algorithm Performance 
According to Different Distribution Functions 

In this study, SMDO algorithm has been updated 
with ‘Normal Distribution’, ‘Beta Distribution’, 
‘Binomial Distribution’ and ‘Extreme Value 
Distribution’ functions. The uniform distribution 
structure working in the system has been replaced 
with these distributions. Statistical analyzes were 
carried out to establish consistency of results during 
operation. The proposed SMDO algorithm has been 
run several times and the best value has been 
recorded. Using these best error values matrix, 1st 
statistical moment value (mean), 2nd statistical 
moment value (standard deviation), 3rd statistical 
moment (skewness) and 4th statistical moment 
(kurtosis) values were calculated. In fact, when 
making statistical analyzes, 1st and 2nd statistical 

moments are generally used. In this study, the 3rd 
and 4th statistical moments are used in order to 
further understand the results and to make more 
analysis of the distribution function used. As it is 
known, skewness shows symmetry and kurtosis 
shows sharpness.  

First of all, the SMDO algorithm is well 
equipped to find much better values for related 
benchmark functions with much iteration. 
However, in this study, multiple analyzes were 
made by taking iteration numbers less. In this study 
it is not intended to compare the SMDO algorithm 
with other algorithms in the literature. The aim of 
the study is to analyze the contribution of different 
distribution functions to the performance of the 
SMDO algorithm. 

In Table 1, there is the SMDO algorithm 
executed with normal distribution. SMDO 
algorithm was run for 20 different benchmark 
functions 20 times according to uniform 
distribution and the average value of the results was 
calculated and shown in the column named with 
‘Classical SMDO with Uniform (Mean)’. Then, as 
shown in Table 1, the SMDO algorithm was run 
according to normal distribution and the resulting 
repetitive results were compared equally. For 
example, for Table 1, the Ackley benchmark 
function is resolved with the original SMDO 
algorithm and the obtained value is given in the 1st 
row of the table under ‘Classical SMDO with 
Uniform (Mean)’ column. Its value is 0.0079. Then, 
the SMDO algorithm was updated with normal 
distribution, the Ackley function was resolved with 
this updated form and the value of 0.0112 was 
obtained and it is given in the first column in the 
table. The classical SMDO algorithm has derived 
better results for the Ackley function. In addition, 
with the values obtained as a result of 20 times 
repeated tests 1st, 2nd, 3rd and 4th statistical 
moment values are given for Ackley function. The 
algorithm was then run for the Beale benchmark 
function in a similar way, and firstly it is achieved 
0.0065 mean value with the Classical SMDO 
algorithm. Then, the SMDO algorithm which is 
updated with the normal distribution was run and as 
a result, it was obtained as 0.0045 value as given in 
the second row in Table 1. Similarly, as a result of 
20 iterations, 2nd, 3rd and 4th statistical moments 
are obtained. As shown in the table, painted in 



DUJE (Dicle University Journal of Engineering) 11:3 (2020) Page 989-998 

 

993 
 

green, normal distribution function based SMDO 
algorithm produced better results in 13 of 20 
benchmark functions than classical SMDO, and in 
other 7 benchmark functions where it did not 
produce better results, it produced results very close 
to classical SMDO. So it can be seen from the 
results, the effect of different distribution functions 
on optimization algorithms is clearly seen. In order 
to make the results more reliable, the algorithm has 
been run many times under the same conditions and 
the results have been obtained accordingly. As it 
can be seen from the results, the use of different 
distribution functions is in a direction that favors 
the algorithm performance as a result of statistical 
analysis. For example, by using normal distribution 
instead of uniform distribution for 20 different 
benchmark functions, in 13 benchmark functions in 
error averages there seems to be improvement. As 
can be seen in the table, the variance values of the 
related solutions are also lower than the first case.  

In Table 2 below, there is the SMDO algorithm 
executed with beta distribution. Our reference point 
in this table is the Classical SMDO result which is 
given in each row in the column named with 
‘Classical SMDO with Uniform (Mean)’. As in 
Table 1, the algorithm was run in a similar way, and 
in 15 of 20 benchmark functions, beta results were 
found with better results than conventional SMDO. 
This is another indication of the effect of the 
distribution function. 

In Table 3 below, there is the SMDO algorithm 
executed with binomial distribution. Our reference 
point in this table is the Classical SMDO result 
which is given in each row in the column named 
with ‘Classical SMDO with Uniform (Mean)’. As 
in Table 1 and Table 2, the algorithm was run in a 
similar way, and in 4 of 20 benchmark functions, 
binomial results were found with better results than 
conventional SMDO.  

In Table 4 below, there is the SMDO algorithm 
executed with extreme value distribution. Our 
reference point in this table is the Classical SMDO 
result which is given in each row in the column 
named with ‘Classical SMDO with Uniform 
(Mean)’. As in Table 1, Table 2 and Table 3 the 
algorithm was run in a similar way, and in 12 of 20 
benchmark functions, extreme value results were 
found with better results than conventional SMDO. 

So this results can be evidence of another indication 
of the effect of the distribution function. 

As can be seen from the tables, the variance is 
actually large in the values obtained with the 
uniform distribution function, which shows that the 
data set, that is, the values used during the 
optimization, are scattered. In stochastic i.e. 
numeric optimization algorithms, the main reason 
for making the statistical analyses for all results is 
whether the results will be stable when running the 
algorithm again or using it for other problems. 

Therefore, in this study, the skewness and kurtosis 
results, which are the 3rd and 4th statistical 
moments, have been added to the mean and 
variances or standard deviation values. While 
examining symmetricity with skewness, kurtosis 
examines measure of peakedness of a probability 
distribution. In fact, these two values are not 
preferred in statistical analysis. However, in this 
study and many other studies, standard deviation 
and mean values are taken as statistical moment. 
Parameters and error values vary, especially when 
scanning the parameter vector space. This makes a 
difference according to the dynamics of the 
problem solved. Sometimes algorithms that do well 
in benchmarking trials may not perform very well 
in engineering problems. Therefore, it is thought 
that the performance analysis of the algorithm 
proposed or used for real-time engineering 
applications will be better by looking at the 
skewness and kurtosis values of the obtained 
parameters. 

SMDO Toolbox 

In this study, a toolbox was created for the SMDO 
algorithm, which operates according to different 
distribution functions. In this study, only some 
results are presented. However, in the presented 
toolbox, a toolbox has been created in which the 
algorithm can be run repeatedly according to 21 
different distribution functions. The created toolbox 
(www.mathworks.com) is published on the site. 
The created toolbox is used as follows.  The "Enter 
parameter count" section indicates how many times 
the algorithm will be run consecutively. The "Enter 
iteration number" section determines how many 
iterations a single cycle of the algorithm will be. 
The "Enter error limit" section is a special 
definition for the SMDO algorithm. 
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Table 1: Results of SMDO Algorithm with Different Benchmark Functions Using Normal Distribution 
Function

SMDO with 

Normal 

Distribution 

Global 

Min 

Value 
Mean(First 

Moment) 

 Classical 

 SMDO 

With 

Uniform 

(Mean) 

Variance(Second 

Moment) 

Skewness(Third 

Moment) 

Kurtosis(Fourth 

Moment) 

SMDO with 

Ackley 
0 0.0112 0.0079 0.01241 2.3824 10.2447 

SMDO with 

Beale 
0 0.0045 0.0065 0.0107 7.4792 74.6493 

SMDO with 

Bohachecsky 
0 0.0020 0.0018 0.0036 2.8920 13.0674 

SMDO with 

Booth 
0 0.0003 0.0010 0.0006 4.4293 29.6066 

SMDO with 

Branin 
0,3978 0.3910 0.4092 0.0554 -6.9216 48.9486 

SMDO with 

DixonPrice 
0 0.0039 0.0351 0.0053 3.3031 18.5576 

SMDO with 

Easom 
-1 -8.3330e-08 

-2.9777e-

08 
1.16062e-07 -1.8169 5.3094 

SMDO with 

GoldsteinPrice 
3 3.2406 4.0397 0.6616 -0.9759 15.8988 

SMDO with 

Griewank 
0 3.1166e-05 2.8866e-05 2.8292e-05 0.6642 2.1408 

SMDO with 

Hump 
0 0.00253 0.0220 0.0027 2.3122 10.0579 

SMDO with 

Levy 
0 0.0002 0.0038 0.0004 5.1653 36.7470 

SMDO with 

Matyas 
0 3.24984e-05 3.3132e-05 3.0056e-05 0.6723 2.1384 

SMDO with 

Perm 
0 0.00756 0.0279 0.0093 2.8875 14.8627 

SMDO with 

Powell 
0 0.0005 0.0003 0.0013 4.7732 27.9739 

SMDO with 

Rastrigin 
0 0.0141 0.0067 0.02999 4.5009 30.5890 

SMDO with 

Rosenbrock 
0 0.1392 0.3961 0.1265 1.6300 7.3854 

SMDO with 

Schwefel 
0 813.7992 813.7996 115.3717 -6.9296 49.0199 

SMDO with 

Shubert 

-

186,73 
-22.31463 -18.3900 18.4898 -1.1027 2.8943 

SMDO with 

Sphere 
0 3.8099e-05 3.6085e-05 3.8897e-05 2.8275 20.0084 

SMDO with 

Zakharov  
0 4.5726e-05 4.0279e-05 6.4747e-05 4.3740 31.2018 
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Table 2: Results of SMDO Algorithm with Different Benchmark Functions Using Beta Distribution 
Function 

Table 3: Results of SMDO Algorithm with Different Benchmark Functions Using Binomial 
Distribution Function 

 

SMDO with 

Binomial 

Distribution 

 

 

Global 

Min. 

Val. 

Mean(First 

Moment) 

 

Classical 

SMDO With 

Uniform 

(Mean) 

Variance(Second 

Moment) 

Skewness(Third 

Moment) 

Kurtosis(Fourth 

Moment) 

SMDO with 

Ackley 
0 0.1056 0.0079 0.5248 4.7737 23.8915 

SMDO with Beale 0 5.942 0.0065 7.0001 0.3370 1.11486 

SMDO with 

Bohachecsky 
0 0.02941 0.0018 0.1538 6.7805 58.9932 

SMDO with Booth 0 0.1053 0.0010 0.3637 3.9940 19.5653 

SMDO with Branin 0,3978 1.1269 0.4092 1.8028 4.5147 26.0063 

SMDO with 

DixonPrice 
0 0.4803 0.0351 0.2918 0.8972 4.72660 

SMDO with Easom -1 -2.1170e-08 -2.9777e-08 4.4813e-08 -4.34627 24.4713 

SMDO with 

GoldsteinPrice 
3 248.7368 4.0397 2854.2248 14.16455 201.75833 

SMDO with 

Griewank 
0 0.01319 2.8866e-05 0.0220 1.7918 6.0395 

SMDO with Beta 

Distribution 

Global 

Min. 

Val. 

Mean(First 

Moment) 

Classical 

SMDO With 

Uniform 

(Mean) 

Variance(Second 

Moment) 

Skewness(Third 

Moment) 

Kurtosis(Fourth 

Moment) 

SMDO with 

Ackley 
0 0.0048 0.0079 0.00479 1.5709 5.3299 

SMDO with Beale 0 0.0011 0.0065 0.003025 10.2732 128.1170 

SMDO with 

Bohachecsky 
0 0.0018 0.0018 0.002896 3.06244 14.8792 

SMDO with Booth 0 9.4914e-05 0.0010 0.00013 3.8692 22.8552 

SMDO with Branin 0,3978 0.3908 0.4092 0.05541 -6.9237 48.9667 

SMDO with 

DixonPrice 
0 0.00099 0.0351 0.001649 3.5398 17.58250 

SMDO with Easom -1 -1.4773e-08 -2.9777e-08 1.0938e-08 -0.8225 2.6445191 

SMDO with 

GoldsteinPrice 
3 3.0417 4.0397 0.4760 -4.7354 34.1134 

SMDO with 

Griewank 
0 3.3553e-05 2.8866e-05 3.1356e-05 0.5283 1.8592 

SMDO with Hump 0 0.00186 0.0220 0.0032 3.1804 13.8229 

SMDO with Levy 0 0.0001 0.0038 0.0002 4.35260 24.2882 

SMDO with 

Matyas 
0 3.555e-05 3.3132e-05 3.0747e-05 0.5315 1.9206 

SMDO with Perm 0 0.00311 0.0279 0.0070 8.2227 86.2100 

SMDO with Powell 0 0.0002 0.0003 0.0011 12.2108 163.6566 

SMDO with 

Rastrigin 
0 0.00128 0.0067 0.00345 6.15650 46.1952 

SMDO with 

Rosenbrock 
0 0.3233 0.3961 0.1038 -0.6704 4.05219 

SMDO with 

Schwefel 
0 813.7992 813.7996 115.3717 -6.9296 49.0199 

SMDO with 

Shubert 
-186,73 -11.54244 -18.3900 5.0931 0.6507 2.21161 

SMDO with Sphere 0 3.3593 3.6085e-05 3.2951e-05 1.3627 7.1360 

SMDO with 

Zakharov  
0 2.7623e-05 4.0279e-05 2.9612e-05 2.2103 13.0656 
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SMDO with Hump 0 0.2901 0.0220 0.1082 5.2853 38.8661 

SMDO with Levy 0 0.1645 0.0038 0.3102 2.9967 15.5586 

SMDO with 

Matyas 
0 0.0019 0.0279 0.0110 5.5704 32.0303 

SMDO with Perm 0 1.0699 0.0003 1.9015 6.0539 50.1328 

SMDO with Powell 0 0.7457 0.0067 4.2443 5.5668 32.0037 

SMDO with 

Rastrigin 
0 0.04411 0.3961 0.2058 4.4399 20.7128 

SMDO with 

Rosenbrock 
0 64.0465 813.7996 114.9534 1.9502 5.8908 

SMDO with 

Schwefel 
0 789.9691 -18.3900 116.8345 -6.0896 41.3975 

SMDO with 

Shubert 

-

186,73 
-14.6498 3.6085e-05 10.8293 -2.6302 10.7316 

SMDO with Sphere 0 0.01348 4.0279e-05 0.08305 9.0685 100.8007 

SMDO with 

Zakharov  
0 0.01573 0.0079 0.1058 9.7663 113.6100 

Table 4: Results of SMDO Algorithm with Different Benchmark Functions Using Extreme Value 
Distribution Function 

 

SMDO with 

Extreme Value 

Distribution 

 

 

Global 

Min. 

Val. 

Mean(First 

Moment) 

 

Classical 

SMDO With 

Uniform 

(Mean) 

Variance(Second 

Moment) 

Skewness(Third 

Moment) 

Kurtosis(Fourth 

Moment) 

SMDO with 

Ackley 
0 0.0142 0.0079 0.01537 2.14544 9.2053 

SMDO with Beale 0 0.0874 0.0065 0.9954 14.0801 200.12788 

SMDO with 

Bohachecsky 
0 0.0023 0.0018 0.0045 3.15584 13.8019 

SMDO with 

Booth 
0 0.0003 0.0010 0.00056 3.85149 26.6506 

SMDO with 

Branin 
0,3978 0.3915 0.4092 0.05555 -6.9114 48.8571 

SMDO with 

DixonPrice 
0 0.00376 0.0351 0.0045 2.5793 12.739 

SMDO with 

Easom 
-1 -7.8097e-08 -2.9777e-08 1.1694e-07 -2.0064 6.1050 

SMDO with 

GoldsteinPrice 
3 3.5185 4.0397 1.0694 2.41662 21.346 

SMDO with 

Griewank 
0 0.00017 2.8866e-05 0.00096 9.1354 90.4217 

SMDO with 

Hump 
0 0.003568 0.0220 0.00478 3.01209 14.6803 

SMDO with Levy 0 0.0003 0.0038 0.000401 2.92719 15.7236 

SMDO with 

Matyas 
0 3.3554e-05 3.3132e-05 3.0966e-05 0.542472 1.93375 

SMDO with Perm 0 0.0085 0.0279 0.01061 2.52858 11.58471 

SMDO with 

Powell 
0 0 0.0003 0 NaN NaN 

SMDO with 

Rastrigin 
0 0.02889 0.0067 0.0856 6.8884 62.67449 

SMDO with 

Rosenbrock 
0 0.1388 0.3961 0.14363 2.27359 10.0489 

SMDO with 

Schwefel 
0 813.7992 813.7996 115.3717 -6.929 49.0199 

SMDO with 

Shubert 
-186,73 -22.0883 -18.3900 19.2324 -1.19970 2.9960 
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SMDO with 

Sphere 
0 6.7565e-05 3.6085e-05 0.000192 11.5382 151.334 

SMDO with 

Zakharov  
0 0.0003 4.0279e-05 0.00123 7.0040 55.8365 

It ensures that the algorithm remains within the 
stability limits for the parameters. The "Enter 
Divergence Vector" section is a specially defined 
function for SMDO as the scanning speed of the 
parameter vector spaces of the parameters 
optimized in the algorithm.  The “Enter 
benchmark type” section provides the user with 
the option to select the desired benchmark 
function [28] with a variable for 27 different 
benchmark functions. The "Enter distribution 
type" section can actually be shown as a first for 
such algorithms. The benchmark function that is 
desired to be used is automatically selected in the 
toolbox and its effect in terms of algorithm can be 
easily monitored.  In this study, a program called 
SMDO Toolbox is developed to implement 
SMDO algorithm. By the help of this program 
SMDO is applied on different benchmark test 
functions with different distribution functions and 
results are gained to compare within each other. 
The program is developed with MATLAB. In the 
program input parameters are taken through 
graphical user interfaces. The GUI of the program 
can be seen in Figure 3. 

 

Fig. 3. GUI of SMDO Toolbox 

Besides this, the mean, best and worst values are 
also shown with the help of this program to 
analyze and compare the results. 

Conclusions 

This paper presents the comparisons of 
solutions of different numerical optimization 
methods by using different benchmark functions 

with different distribution functions. SMDO 
algorithm has proven its success especially in a 
real world engineering problems such that 
controller design. This is a big deal because 
generally optimization problems are verified 
through benchmark test functions which are far 
away from solving real world problems 
efficiently. But if an algorithm does not 
contribute to a real world problem it remains 
restricted in the theoretical ground and we cannot 
use it in a practical way which is not preferred 
from an engineering perspective.  

But the performance of SMDO like other 
numerical methods can be enhanced by 
developing its randomization step. In Section 4 it 
is shown that SMDO algorithm can work with 
most of the benchmark functions efficiently like 
other algorithms do. This comparison is made 
with uniform distribution function. From this 
table we can see that an algorithm which is 
eligible for real world problems can be applied to 
artificial benchmark functions. But to move this 
success one more step further, randomization 
process in the SMDO algorithm is focused on. 
For this SMDO algorithm is tried with different 
distribution functions by using different 
benchmark functions. When using different 
distribution functions a very important notion in 
statistics is analyzed which is statistical moments. 
The four statistical moments are shown in tabular 
form when using different distribution functions 
in Section 5. It is showed that the used 
distribution function in a numerical algorithm can 
change the solution. This effect can be positive or 
negative. It is seen that the distribution function 
which can be more suitable for an algorithm can 
be specified by analyzing the statistical moment 
of the data set produced. Because the statistical 
moments give the clues of algorithm's process 
characteristics. So by using the data produced in 
the algorithm makes us to analyze the 
characteristics of the randomization process of 
the algorithm. 
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