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Abstract 

Predicting implicit drug-disease associations is critical to the development of new drugs, with the aim of minimizing side effects and 
development costs. Existing drug-disease prediction methods typically focus on either single or multiple drug-disease networks. 
Recent advances in nanoparticles particularly in cancer research show improvements in bioavailability and pharmacokinetics by 
reducing toxic side effects. Thus, the interaction of the nanoparticles with drugs and diseases tends to improve during the 
development phase. In this study, it presents a variational graph autoencoder model to the cell-specific drug delivery data, including 
the class interactions between nanoparticle, drug, and cancer types as a knowledge base for targeted drug delivery. The cell-specific 
drug delivery data is transformed into a bipartite graph where relations only exist between sequences of these class interactions. 
Experimental results show that the knowledge graph enhanced Variational Graph Autoencoder model with VGAE-ROC-AUC (0.9627) 
and VGAE-AP (0.9566) scores performs better than the Graph Autoencoder model.  

Keywords: Variational Graph Autoencoder, Nanoparticles, Drug–disease Association  

 

Öz 

Örtük ilaç-hastalık ilişkilerini tahmin etmek, yan etkileri ve geliştirme maliyetlerini en aza indirmek amacıyla yeni ilaçların 
geliştirilmesi için kritik öneme sahiptir. Var olan ilaç-hastalık tahmin yöntemleri tipik olarak ya tekli ya da çoklu ilaç-hastalık ağlarına 
odaklanmaktadır. Özellikle kanser araştırmalarında nanoparçacıklardaki son gelişmeler, toksik yan etkileri azaltarak biyoyararlanım 
ve farmakokinetikte gelişmeler göstermektedir. Bu nedenle, nanopartiküllerin ilaçlar ve hastalıklarla etkileşimi geliştirme 
aşamasında iyileşme eğilimindedir. Bu çalışmada, hedeflenen ilaç dağıtımı için bir bilgi tabanı olarak nanopartikül, ilaç ve kanser 
türleri arasındaki sınıf etkileşimlerini içeren hücreye özgü ilaç dağıtım verilerine varyasyonel bir çizge otokodlayıcı modeli 
sunmaktadır. Hücreye özgü ilaç verme verileri, ilişkilerin yalnızca bu sınıf etkileşimlerinin dizileri arasında var olduğu iki parçalı bir 
grafiğe dönüştürülür. Deneysel sonuçlar, bilgi çizgesi ile geliştirilmiş Varyasyonel Çizge Otokodlayıcı modelinin VGAE-ROC-AUC 
(0.9627) ve VGAE-AP (0.9566) skorlarıyla Çizge Otokodlayıcı modelinden daha iyi performans sergilediğini göstermektedir.

Anahtar Kelimeler: Varyasyonel Çizge Otokodlayıcı, Nanoparçacıklar, İlaç-hastalık İlişkisi  

 

1. Introduction 

Formulation of drugs into nanoparticles gives drugs new 
functionalities, such as improved bioavailability and 
pharmacokinetics by reducing toxic side effects, intensively 
researched in cancer [1]. Various nanocarrier systems are used 
to focus on the cells and deliver the drug directly to the target 
without reaching other places, and the enclosed drug quantity 
can be expanded by guaranteeing drug-carrier attractiveness [2]. 
For instance, using ionic liquids in the field of nanoparticle 
synthesis, it has significant antitumor activity against breast 
cancer cells [3]. To provide more concentrated knowledge for 
these critical insights, recent advances enable knowledge bases 
and ontologies to provide highly accessible and easily updated 
representations of the interoperable data, allowing domain 
experts to handle relevant records including their relationships 
[4]. CancerMine is a well-known sample of this kind of knowledge 
bases, which was extracted from the scientific literature and 
updated regularly with minimal human effort [5].  

Despite the crucial benefits of the automated knowledge base 
construction, it requires time consuming operations during 
collecting the dataset, model training and tuning, particularly for 
individual researchers or small labs. To generalise these private 
efforts, the SPIKE-KBC system proposes an extractive-search 
based knowledge base curation method without requiring 
extensive training in text mining and natural language processing 
[6]. In this case, the SPIKE-KBC system presents the cell specific 
drug delivery data (CSDD) considering the interactions among   
nanoparticle, drug and cancer types as a targeted drug delivery 
knowledge base. 

There exist three main categories for predicting drug-disease 
association methods. The first category leverages disease and 
drug similarities and their pairwise associations. As an example, 
to estimate potential drug-disease interactions, Gottlieb et al. [7] 
introduce a technique concentrating on drug indications by 
computing drug-drug and disease-disease similarity pairs. Luo et 
al. [8] propose a random walk-based method leveraging a drug–
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disease network to predict the association probability. Zhang et 
al. [9] present a similarity constraint-based matrix factorization 
approach to estimate the novel effects of drugs.   

Another category brings together a wide range of data on drugs 
and diseases.  WGMFDDA [10] performs a graph regularized 
matrix factorization method to infer potential effects of drugs.  
LRSSL [11] proposes sparse subspace learning for the prediction 
of implicit drug indications.  

As the last category, recent methods use graph based deep 
learning models to predict the potential relations drug-disease 
pairs from the implicit association possibilities. For instance, 
Zhang et al. [12] propose a bipartite graph neural model and a 
similarity graph to reach the possible interactions between drugs 
and diseases. Since these are similarity-based methods to extract 
new drug-disease relationships, graph neural networks have 
been widely used. GNDD [13] is a graph neural network-based 
method for estimating drug-disease pair interactions by covering 
the complex knowledge between these pairs. Yu et al. [14] 
present graph neural network method by using only critical 
drugs and disease properties. 

Current drug-disease prediction approaches generally 
concentrate on single or multiple drug-disease neural models. 
With recent advances in nanoparticles showing improvements, 
particularly in cancer research, the interaction of nanoparticles 
with drugs and diseases has the potential to improve the pipeline 
of new drugs. In this work, we propose a variational graph 
autoencoder [15] model to the cell-specific drug delivery data, 
including the interactions between nanoparticle, drug, and 
cancer types as a knowledge base for targeted drug delivery.  

The rest of the paper is structured as follows. We propose a 
general perspective of the cell specific drug delivery data used in 
this study with preprocessing steps, the proposed method, 
including optimized parameters, and used evaluation criteria as 
a performance measure in study and results. Section 4 presents 
the conclusion of the study and denotes the future directions.   

2. Materials and Method 

This section illustrates the data used in this work and 
summarizes the methods for predicting CSDD knowledge base. 

2.1. CSDD knowledge base 

The CSDD knowledge base is based on the SPIKE extractive 
search engine, which is a sentence-level, contextual and 
linguistically informed extractive engine [16]. By using this 
engine, the CSDD knowledge base is extracted by adding layers 
biomaterial (nanoparticles-incorporated biomaterials [17]), 
ligand (targeting molecule), target and cancer.  

The SPIKE extractive search engine discovers patterns using both 
dependency graphs and token sequences, as well as Boolean 
keyword queries. Boolean queries that do not consider the order 
of keywords or groups of keywords in each text. Sequential 
queries focus on the distance and order of concepts surrounded 
by anchor words. Syntactic queries highlight the linguistic 
representations associated with query words. Considering an 
example of capturing a sequence-based biomaterial entity in the 
SPIKE-KBC system [6], it filters 
“Paragraph:"delivery|targeting|nanomedicine”, where “|” 
symbol refers to alternative keywords. Then a sample query 
“vehicles such as: *” performs wildcard symbol “*” to match any 
single word. As an example, the placeholders arg1 and arg2 are 
used to capture the relationships between biomaterial and drug. 
To extract the relations, the queries arg1: w={biomaterials2} and 
arg2: w={FDA_DRUGS_YS1} are defined with the filter drug 
delivery:("abstract"). For the sample query, ‘arg1’ and ‘arg2’ are 

used to explore if the same sentence contains domain-specific 
keywords. In this case the number of results is 3431 and there 
are 1192 relations.  

The annotation module comprises these extracted entities and 
relations and there are 3 annotators to review the extracted 
output [6]. If there is an approval or rejection of any instance, it 
ignores additional instances of the same entity-entity pair. 
Therefore, the final knowledge base instances are not 
proportional to the exact number of query results.  

Considering a randomly selected sample in this knowledge base, 
the first entity type biomaterial is “alginate” and it connects to the 
drug “zidovudine”, and the reference title for this triple <alginate, 
CONNECTS_TO, zidovudine> is “Encapsulation of zidovudine in 
PF-68 coated alginate conjugate nanoparticles for anti-HIV drug 
delivery [18]”. Further, the reference sentence is “In this study, 
the anti-viral drug <e2>zidovudine</e2> (AZT) was 
encapsulated inside the amide functionalised <e1>alginate</e1> 
nanoparticles (AZT-GAAD NPs) using emulsion solvent 
evaporation method”. Thus, it implies different sequences of a 
biomaterial linked to a specific ligand, and it can deliver a drug to 
a critical cellular target for a specific cancer type. In this case, the 
goal of targeted drug delivery in cancer research is to improve the 
efficacy of anticancer drugs while minimising toxicity.   Another 
direction in this research area is to focus on a nanoparticle that 
delivers drugs to different types of cancer by binding to a cellular 
target. As a result of this direction, the CSDD knowledge base 
extracts all the links between biomaterials, cancers, targets, 
ligands, and drugs annotated by the four researchers before 
inserting them into the knowledge base. 

Table 1. The statistics of the CSDD knowledge base. 

Entity Type Entity Size 

Biomaterial 61 

Cancer 53 

Cell type 29 

Drug 439 

Ligand 219 

Target 173 

To construct the public nanomedicine knowledge base to deliver 
drugs for specific type of cancers, the CSDD knowledge base 
compiles entities such as drugs, biomaterials and cell types using 
SPIKE queries along with knowledge resources such as DrugBank 
[19] and Human Protein Atlas [20]. It states that it collects 910 
drug entities from DrugBank (but there is no further description 
of the distinctness). They also serve 10 relations between entities 
including biomaterial-drug, biomaterial-target, and drug-cancer. 
As denoted in Table 1, this knowledge base contains 61 
biomaterials, 53 cancers, 29 cell types, 439 drugs, 219 ligands 
and 173 targets, linked with 6089 annotated relations. Due to the 
existence of synonyms and acronyms for many biomaterial and 
ligand entities, the duration of the knowledge base construction 
is four to five weeks.  

To define relations, they assume that the links between 
biomaterials, ligands, targets, and drugs might indicate 
reasonable and critical associations, as biomaterials tend to 
confer critical intrinsic properties, including protein binding and 
immune cell evasion. For some cases, explicit relation types exist, 
e.g., ligand-target or “is_used_to-treat” relation in drug and 
disease entity pairs. With respect to these implicit and explicit 
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relation extraction phases, there are critical sequences reflecting 
entity and relation combinations. In this situation, for instance, 
the first sequence comprises cell type, ligand, target, cancer, drug, 
and biomaterial. In the PubMed corpus [21], this sequence 
reaches the highest number of hits considering the assigned 
combinations.  

2.2. Proposed method 

The CSDD knowledge base can be represented as a special case of 
graphs in the form of sequences. Graph convolutional networks 
(GCNs) generalize the convolution concept of an image by 
updating an embedding of a pixel with the aggregated 

information passed by all other neighbor pixels in non-grid-like 
structures [22]. In the graph autoencoder (GAE) model, an 
encoder maps the given graph into a lower dimensional space, 
and then a decoder rebuilds the given graph from the low-
dimensional embedding model. The main objective is then to 
optimize the model by minimizing the reconstruction loss.  

In this study, we employ the Variational GAE (VGAE) [15] as a 
similar version of the GAE model in which the VGAE leverages a 
multivariate Gaussian distribution as the output heads of the 
encoder model, rather than encoding each node as a particular 
point in the latent embeddings.  

 

Figure 1. General structure of the VGAE method 

 

 

Figure 2. Example sequences of the bipartite graph structure

Traditional approaches solve the link prediction problem by 
assuming that similar nodes tend to have the probability of edges. 
These methods usually compute the similarity of nodes through 
heuristic node similarity scores or a labor-intensive feature 
extraction task. Rather than employing extensive manual feature 
extraction methods, the VGAE can learn latent features from the 
local neighborhood in a new association prediction task 

leveraging a graph neural network, and subsequently aggregate 
the pairwise node embeddings to build association 
representations. As denoted in Figure 2, nodes represent meta-
layer classes drugs and cancers combined with 5 different 
sequences and meta-edges (blue bold line) represent main 
associations for the link prediction task on the bipartite graph.     
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We revise the VGAE method of the implementation in the 
PyTorch Geometric (PyG) library [23].  Particularly, we adapt the 
encoder model by separating GCN convolutional (Conv) layers to 
produce the mean and variance distributions. In this case, one of 
these Conv layers estimates the mean of the distribution, and the 
other one predicts the standard deviation. There are 3 Conv 
layers and one dropout in the VGAE class. We employ the default 
decoder model in the PyG library.   

For the undirected graph G = (V, E) and N represents the size of 
nodes. As illustrated in Figure 1, A is the adjacency matrix of G, 
and its D degree matrix, node features as matrix X and Z matrix 
including stochastic latent variables zi. Finally, a two-layer GCN 
represents the inference. 

q(Z|X, A) =∏𝑞(𝑧𝑖|𝑋, 𝐴)

𝑁

𝑖=1

 
(1) 

q(𝑧𝑖|X, A) = η(𝑧𝑖|𝜇𝑖 , diag(𝜎𝑖
2)) (2) 

where 𝜇𝑖  represents ith mean vector, diag is the diagonal 
covariance matrix, and a neural network is to be optimized 
during the prediction. Overall, the objective becomes the 
minimization of the form. 

L = 𝜀𝑞[logp(A|Z) − KL[q(Z|X, A)||p(Z)] (3) 

We set the hidden size, out channels and epochs to 200, 20 and 
30, respectively.  The output feature size is 20, the learning rate 
is set to 0.1, the dropout is 0.5, and the Adam optimizer is used.  

2.3. Evaluation criteria 

The CSDD knowledge base transformed into a bipartite graph 
where edges only exist between sequences as denoted in Table 2. 
Hence, the CSDD knowledge base can be represented as a special 
case of graphs in the form of sequences. For each sequence, we 

keep the first class as the initial step in the bipartite graph by using 

the graph connectivity. Furthermore, the last class represents the 

target node while predicting links between these sequences. As an 

example, considering the sequence 1, the representation begins with 

the class “CellType”, followed by “Ligand -> Target -> Cancer -> 

Drug”, and the target class is “Biomaterial” for the overall link 

prediction task. It follows five different combinations of these 

representations. As shown in Figure 3, "Drug" and "Cancer" are the 

meta-layer class representations of the drug-disease association 

prediction task. For sequence 1, "Biomaterial" links to "Drug" and 

generates the left side of the bipartite graph as a combined sequence. 

On the other side, "CellType", "Ligand" and "Target" connect the 

meta-class "Cancer" and generate another combined sequence. We 

keep their relations and transform them into such a two-dimensional 

knowledge base embedding model perspective.  

By using the RandomLinkSplit method in the PyG library, we 
generate train, validation, and test sets. We select 15% and 5% of 
edges as test and validation edges, respectively.  In this situation, 
it hides some randomly selected edges from the model during the 
training phase. Since these combinations of sequences are 
transformed into the link prediction task, the objective is to 
estimate the output as an actual link or not. Hence, we apply the 
area under the ROC-AUC curve, and the average precision (AP) as 
the evaluation metrics for this study. 

 

Table 2. Five different class layering sequences. 

Sequence Representation  

SEQ1 CellType, Ligand, Target, Cancer, Drug, Biomaterial 

SEQ2 Biomaterial, Ligand, Target, CellType, Cancer, Drug 

SEQ3 Ligand, CellType, Target, Cancer, Drug, Biomaterial 

SEQ4 Target, CellType, Ligand, Biomaterial, Drug, Cancer 

SEQ5 Cancer, CellType, Target, Ligand, Biomaterial, Drug 

The ROC-AUC metric represents how well the proposed model 
predicts whether a positive edge is a positive edge or not. The 
ROC-AUC metric used by the Sklearn library is closer to 1, which 
means the model has good positive/negative separability. The AP 
is the second metric implies the area under the precision-recall 
curve and summarizes the precision-recall curve as the weighted 
average of the precisions at each threshold n. The AP measures 
whether a model can identify all positive edges without 
misclassifying too many negative edges as positive. 

3. Results and Dicussion 

To evaluate CSDD knowledge base considering the test set, we 
generate 5 sequences for classes including cell types, 
biomaterials, ligands, targets, and cancers. Besides these 
sequence representations, we keep the entire knowledge base as 
“ALL” sequence. Since it is a bipartite graph, models learn on their 
own by leveraging the graph connectivity.  

Regarding the ALL sequence, we generate the ROC curve for the 
GAE model as illustrated in Figure 3.  The ROC-AUC curve is an 
evaluation measure for the classification of the given labels at 
different threshold values, especially for unbalanced data sets. 
The ROC is a type of probabilistic curve. On the other hand, the 
AUC indicates the distinctness degree. Considering the ROC 
curve, the x-axis and y-axis show the true positive, and the false 
positive rates, respectively. When the blue line is close to the 
upper left corner, it indicates that the model is working well.  

  

Figure 3. ROC curve for GAE model 

As illustrated in Figure 4, the ROC-AUC curve indicates that the 
AUC score of the VGAE model performs slightly better than the 
GAE model regarding the sequence ALL representation.  
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Figure 4. ROC curve for VGAE model 

As denoted in Table 3, the VGAE achieves slightly better 
performance according to the ROC-AUC and AP scores in the 
sequence ALL representation. Moreover, the SEQ2 starting from 
the biomaterial as illustrated in Table 2, achieves the highest 
scores for both models. 

Table 3. The experimental results for different sequences. 

Sequence GAE-ROC-AUC GAE-AP VGAE-ROC-AUC VGAE-AP 

ALL 0.9129 0.9108 0.92 0.9134 

SEQ1 0.8501 0.8614 0.837 0.854 

SEQ2 0.9577 0.9506 0.9627 0.9566 

SEQ3 0.8018 0.8275 0.811 0.8329 

SEQ4 0.7931 0.8251 0.7941 0.8268 

SEQ5 0.8413 0.8609 0.837 0.858 

 

the obtained results should be presented, and if necessary, 
supported with figures, tables, etc. The findings of the study 
should be compared with relevant literature, and the similarities 
and differences in the results should be interpreted to highlight 
the significance of the obtained results. 

4. Conclusion 

In this study, we propose the effect of different sequences in 
terms of the GAE and the VGAE models. Experimental setup 
shows that the VGAE model achieves remarkable results 
considering the ROC-AUC curve and AP score. Finally, the 
proposed model reflects the importance of nanoparticles in 
predicting drug-disease associations, which is one of the essential 
tasks of drug delivery systems. 

Recent advances in nanoparticle research reveal that the 
interaction of nanoparticles with drugs and diseases has the 
potential to improve the pipeline of new drugs improvements 
especially in cancer research. Table 3 shows that the combined 
sequence “SEQ2” achieves the highest scores, as the only 
Biomaterial nodes (light magenta) are in the sequence (SEQ2) of 
the “Cancer” meta-layer class in Figure 2. The rest of the 
Biomaterial nodes are represented in “Drug” meta-layer class. 
Hence, it seems to be an indicator of one of the directions to 
improve the prediction of drug-disease association using 
nanoparticle interaction data, which is worthy of future 
investigation. 

For the future work, we will enrich the dataset with existing 
knowledge graphs related to the FDA information as well as other 
compounds, and we will apply paragraph embeddings [24] and 

sentence BERT models [25] to employ reference sentences and 
descriptions as node features.  
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