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ABSTRACT 

The rise in internet usage and data transfer rates has led to numerous anomalies. Hence, anomaly-based 

intrusion detection systems (IDS) are essential in cybersecurity because of their ability to identify 

unknown cyber-attacks, especially zero-day attacks that signature-based IDS cannot detect. This study 

proposes an ensemble classification for intrusion detection using a weighted soft voting system with 

KNN, XGBoost, and Random Forest base models. The base model weights are optimized using the 

Nelder-Mead simplex method to improve the overall ensemble performance. In this study, a robust 

intrusion detection framework that uses soft-voting classifier-level weights optimized using the Nelder-

Mead algorithm and feature selection is proposed. The system's performance was evaluated using the 

KDD99 and UNSW-NB15 datasets, which demonstrated that the proposed approach exceeded other 

existing methods in respect of accuracy and provided comparable results with fewer features. The 

proposed system and its hyperparameter optimization technique were compared with other cyber threat 

detection and mitigation systems to determine their relative effectiveness and efficiency. 

 

Keywords: Intrusion Detection Systems, Ensemble Learning, Soft Voting, Hyperparameter 
Optimization, Nelder-Mead Algorithm. 
 

Saldırı Tespiti İçin Nelder-Mead Algoritması ile Optimize Ağırlıklı 

Oylama Topluluk Öğrenmesi 
 

ÖZET 

İnternet kullanımı ve veri aktarım hızlarındaki artış çok sayıda anomaliye yol açmıştır. Bu nedenle, 

anomali tabanlı saldırı tespit sistemleri (IDS), bilinmeyen siber saldırıları, özellikle de imza tabanlı 
IDS’lerin tespit edemediği sıfırıncı gün saldırılarını belirleme yetenekleri nedeniyle siber güvenlikte çok 

önemlidir. Bu çalışmada, KNN, XGBoost ve Rastgele Orman temel modelleri ile ağırlıklı bir yumuşak 

oylama sistemi kullanarak saldırı tespiti için bir topluluk sınıflandırması önerilmektedir. Temel 

modellerin ağırlıkları, genel topluluk performansını iyileştirmek için Nelder-Mead simpleks yöntemi 

kullanılarak optimize edilmiştir. Bu çalışmada, Nelder-Mead algoritması ve özellik seçimi kullanılarak 

optimize edilen yumuşak oylama sınıflandırıcı seviyesi ağırlıklarını kullanan sağlam bir saldırı tespit 

çerçevesi önerilmektedir. Sistemin performansı KDD99 ve UNSW-NB15 veri setleri kullanılarak 

değerlendirilmiş ve önerilen yaklaşımın doğruluk açısından mevcut diğer yöntemleri aştığını ve daha az 

özellik ile karşılaştırılabilir sonuçlar sağladığı tespit edilmiştir. Önerilen sistem ve  

hiperparametre optimizasyon tekniği, göreceli etkinlik ve verimliliğini belirlemek için diğer siber tehdit 

tespit ve sınırlama sistemleriyle karşılaştırılmıştır. 
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I. INTRODUCTION 
 

The widespread use of information technology and the expansion of cyberspace have made significant 

contributions to economic and societal progress. However, these advancements have also brought new 

security risks and challenges. Ensuring the security of cyberspace is critical to the mutual interests of 

humanity, global peace and development, and the national security of all nations. With the advent of the 

digital age, interconnectedness has become the norm, and the world now heavily depends on software. 

As a result, the presence of software inevitably leads to the existence of vulnerabilities, which in turn 

results in increasingly complex network infrastructure and a constantly expanding attack surface. 

Network security attacks are becoming more sophisticated and widespread on scale. Ultimately, it can 

be claimed that all financial and technological conflicts are essentially being carried out in cyberspace. 

According to SonicWall threat researchers, there has been a notable increase in overall intrusion 

attempts globally during the first half of 2023. Specifically, they have recorded a staggering 3.7 trillion 

intrusion attempts, which represents a 21% rise compared to the same period in 2022 [1]. Cybersecurity 

breaches continue to increase, heightening uncertainty and risks and causing widespread concern 

globally due to their impact on national security and the economy. The cost of preventing cybercrime is 

rapidly mounting, generating financial losses including organizational damages, compensation and legal 

fees [2]. This trend is creating a global impact given its consequences to national security and the 

economy.  

The rise in internet usage and data transfer rates has led to numerous anomalies. Institutions and 

organizations are continually upping their investment in cybersecurity technologies to ensure a secure 

and stable service for their users. The market value for cybersecurity was approximately $164 billion in 

2019, and it is projected to reach $637 billion by 2030. Figure 1 [3] provides a depiction of the estimated 

size of the cybersecurity market over time. For these reasons, it is clear that there should be a greater 

focus on technology optimization for effective cyber defense. 

 

Figure 1. Size of cyber security market worldwide from 2021 to 2030 
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The aim of using machine learning techniques is to develop an intelligent intrusion detection system 

(IDS) as a secondary defense mechanism for securing computer networks. IDS works by keeping track 

of activity on a computer network or system. The system analyzes events to identify potential security 

breaches or unauthorized access attempts. Anomaly-based intrusion detection systems play a key role 

in the field of cybersecurity due to their ability to identify unknown cyberattacks, specifically zero-day 

attacks, which cannot be detected by signature-based IDSs. These systems employ the analysis of 

network traffic and/or resource usage to identify abnormal states, classifying them as anomalies. When 

malicious activity is detected, an alert is raised, enabling early intrusion and preventing potential attacks 

from causing substantial damage. Anomaly-based IDSs are also effective in detecting suspicious activity 

or policy violations in real-time, providing an opportunity for timely response and mitigation to mitigate 

potential harm caused by cyber threats [4]. In today's Information and Communication Technology 

(ICT) era, IDSs are crucial to strive for comprehensive protection to ensure the confidentiality, integrity, 

and availability of information. 

Main contributions of this paper are as follows:  

• In the domain of intrusion detection, an ensemble classification approach is proposed, which 

leverages a weighted soft voting mechanism in conjunction with KNN, XGBoost, and Random 

Forest as base models. To optimize the performance of the soft voting, the weights associated 

with each base model are accurately determined through the Nelder-Mead algorithm. 

• To evaluate the performance of the proposed system, two datasets, namely KDD99 and UNSW-

NB15, were used. These datasets served as the foundation for assessing the effectiveness and 

efficiency of the suggested system in achieving its objectives. 

• The performance of the proposed system has been compared with other systems in order to 

determine its relative efficiency and effectiveness in detecting and mitigating cyber threats. 

 

 

II. RELATED WORK 
 

In the domain of intrusion detection, a diverse set of machine learning algorithms is employed to detect 

and classify patterns and anomalies in network traffic and system behavior. These algorithms play a 

crucial role in identifying and preventing cyber-attacks. By using machine learning algorithms, intrusion 

detection systems can adapt and learn from new data, enhancing their capacity to detect emerging threats 

and new attack patterns. 

Ensemble methods, on the other hand, are machine learning techniques that involve combining multiple 

base models to improve the overall performance of a prediction or classification system. Ensemble 

methods have gained significant attention in machine learning research due to their effectiveness in 

reducing false positive rates and generating more accurate solutions compared to using a single model 

alone. By aggregating the predictions of multiple models, ensemble methods aim to leverage the 

diversity and complementary strengths of individual models, leading to improved overall performance. 

Yao et al. [5] conducted experiments using the UNSW-NB15 dataset to evaluate the performance of 

Soft Voting with three baseline models: XGBoost, LightBGM, and Random Forest. The results 

demonstrate that the Soft Voting method achieves higher accuracy rates compared to the individual 

models, both in binary and multiclass classification scenarios. This finding suggests that using Soft 

Voting is both feasible and efficient for improving the accuracy of classification models.  

Shen et al. [6] employed Class Level Soft Voting as an ensemble learning technique, using Support 

Vector Machines (SVM), k-Nearest Neighbors (KNN), and Decision Trees (DT) as base models. In the 

Soft Voting approach, the weights of the base models were optimized using the Chaos Bat algorithm, 

which draws inspiration from the behavior of bats and incorporates concepts from chaos theory. This 
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optimization process aims to find the ideal combination of weights for the base models, thereby 

enhancing the overall performance of the ensemble. The experimental results showcased that the Soft 

Voting ensemble method achieved accuracy levels comparable to other ensemble learning algorithms.  

Swami et al. [7] introduced a voting-based ensemble model for predicting final results in the detection 

of Distributed Denial of Service (DDoS) attacks against Software Defined Networks (SDN). The paper 

specifically focuses on analyzing three ensemble models: Voting-CMN (CART, MLP, NB), Voting-

RKM (RF, KNN, MLP) and Voting-CKM (CART, KNN, MLP). The experimental results indicated that 

the proposed voting models were more successful in terms of accuracy when compared to the existing 

models. 

Zhou et al. [8] developed a model for detecting network attacks by using feature selection and voting 

ensemble learning techniques. The model incorporates Correlation Based Feature Selection, which is a 

heuristic algorithm used for reducing dimensionality by selecting the optimal subset of features based 

on their correlation. The proposed approach adopts a voting ensemble learning method that includes 

Forest PA (Forest by Penalizing Attributes), Random Forest, and C4.5 algorithms. The voting 

mechanism combines the probability estimates from the base learners to make the ultimate prediction. 

The experimental results demonstrated that the proposed model outperforms other existing methods in 

terms of various evaluation metrics. 

Gu et al. [9] presented a framework for intrusion detection that is based on an ensemble of Support 

Vector Machine (SVM) models. To address the issue of imbalanced datasets commonly encountered in 

intrusion detection, the authors applied the ratio transformations technique, which aims to improve the 

distribution of data by adjusting the ratio between the minority and majority classes. By enhancing the 

quality of the training data, this technique helps improve the effectiveness of the intrusion detection 

system. To further enhance the diversity of the SVM classifiers, the authors employed the Fuzzy C-

Means (FCM) method. This method contributes to capturing diverse knowledge within the ensemble by 

introducing additional variability in the classifiers. Finally, the authors applied a non-linear combination 

method to aggregate the individual SVM classifiers. This aggregation technique enables the ensemble 

model to benefit from the diverse knowledge captured by each SVM classifier, resulting in improved 

intrusion detection performance. 

Gao et al. [10] proposed an adaptive ensemble method for intrusion detection. The approach involved 

combining base classifiers, namely Decision Trees (DT), Random Forest (RF), k-Nearest Neighbors 

(KNN), and deep neural networks, using the voting method with class weights. To determine the class 

weights, the authors calculated the training accuracy of each algorithm for several attack types. These 

weights were then used in the voting process to assign more importance to the predictions of the base 

classifiers with higher accuracy. By employing this adaptive ensemble method, Gao et al. aimed to 

enhance the general performance of intrusion detection systems by leveraging strengths of multiple base 

classifiers and adjusting their contributions based on their individual accuracies for different attack 

types. 

Seth et al. [11] put forward a model that aims to construct an ensemble for identifying multiple attack 

types. The approach involves evaluating the detection abilities of various base classifiers and ranking 

them accordingly. The ranking matrix is computed based on the F1-score of each algorithm for various 

attack types. When making the final prediction, the output of an algorithm for a particular attack is only 

taken into account if it has the highest F1-score in the ranking matrix for that specific attack category. 

Zhang et al. [12] introduced a dynamic weighted voting classifier (DWC) as a method for network 

intrusion detection. The DWC classifier offers improved performance compared to fixed weighted 

voting and simple majority rule voting. To implement the DWC classifier, an ensemble of classifiers is 

first trained using a dataset. During the prediction phase, the DWC classifier calculates the weighted 

sum of the individual classifiers' predictions. The weights assigned to each classifier are updated 

dynamically based on their performance in previous predictions. This dynamic updating ensures that 

classifiers with better performance receive more weight in the final prediction. The results showed that 
the DWC classifier surpassed both fixed weighted voting and simple majority rule voting in terms of 

evaluation metrics. 
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Previous studies in the field have primarily focused on optimizing machine learning algorithms to 

improve the overall effectiveness of intrusion detection systems. Feature selection and ensemble 

learning have been the main methods used for optimization. Despite these efforts, there is still substantial 

potential for improvement in the results of these studies. More study and investigation are required to 

improve the ability to spot security breaches effectively. 

 

 

III. MATERIALS AND METHODS 
 

A. DATASETS 

KDD99 and UNSW-NB15 datasets were used in this research. 

The KDD99 dataset has gained significant popularity in the domains of intrusion detection and machine 

learning. It played a vital role in the Third International Knowledge Discovery and Data Mining Tools 

Competition (KDD-99), which assessed different data mining and knowledge discovery techniques. The 

main objective of the competition was to develop a network intrusion detection system that could 

accurately classify between malicious connections, known as attacks, and normal connections. The 

dataset comprises network traffic data, including normal and attack segments, to simulate a standard 

network. These attacks are classified into four categories: DOS (Denial of Service), R2L (Remote-to-

Local), U2R (User-to-Root), and probing. Each record in the dataset is assigned a class label and is 

associated with 41 fixed feature attributes [13]. Within the 41 fixed feature attributes of the KDD99 

dataset, nine attributes are of the discrete type, while the rest are continuous. This study focuses on the 

"kddcup.data_10_percent" dataset, with a total of 494021 records. 

The UNSW-NB15 dataset was created by the University of New South Wales (UNSW) to provide a 

comprehensive collection of raw network packets. This dataset combines genuine modern normal 

activities with synthetic contemporary attack behaviors. The data was captured using the tcpdump tool, 

resulting in a total of 100 GB of raw traffic stored in Pcap files. The UNSW-NB15 dataset includes nine 

distinct attack types, namely Fuzzers, Analysis, Backdoors, DoS (Denial of Service), Exploits, Generic, 

Reconnaissance, Shellcode, and Worms. To generate the UNSW-NB15 dataset, the researchers utilized 

the IXIA PerfectStorm tool. This process resulted in the creation of a dataset with a total of 49 features, 

including the class label [14]. The dataset is split into two subsets: the training set 

(UNSW_NB15_training-set.csv) and the testing set (UNSW_NB15_testing-set.csv). The training set 

consists of 175341 records, while the testing set contains 82332 records. In total, the UNSW-NB15 

dataset comprises 257673 records. 

B. THE BASE LEARNERS 

B. 1. K-Nearest Neighbor (KNN) 

The K-Nearest Neighbor (KNN) algorithm is a non-parametric, supervised learning classifier that 

applies the proximity of data points to make classifications or predictions. It operates by examining the 

class labels of the nearest neighbors of a given data point to designate a class label to that point. The 

algorithm begins by calculating the distance between the query point and all other data points in the 

dataset. The most commonly used distance metric is Euclidean distance, which measures the straight-

line distance between two points. Other distance metrics, such as Manhattan and Minkowski distances, 

can also be used depending on the data and problem domain [15]. 

Once the distances are calculated, the algorithm selects the k nearest neighbors based on the chosen 

distance metric. The parameter k represents the number of neighbors to count when making a 

classification. A higher value of k considers more neighbors, while a lower value of k focuses on fewer 
neighbors [16]. Finally, the algorithm assigns a class label to the query point based on the majority class 
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of its k-nearest neighbors. Fundamentally, the query point is assigned the class label that is most 

commonly found among its k neighbors. 

The KNN algorithm is simple and often used for sorting and prediction. It gives a new data point a 

category from the most common class among its closest neighbors. While it has advantages such as its 

simplicity and ability to learn non-linear decision boundaries, it can be computationally intensive for 

large training sets and choosing the right value for k can be a balancing act. 

B. 2. Xgboost 

The XGBoost algorithm is a technique that combines weak learners, usually decision trees, in a 

sequential manner to create a robust predictive model. It follows the boosting principle, where each new 

model in the sequence focuses on correcting the errors made by the previous models, thereby improving 

the overall predictive performance. 

One of the advantages of XGBoost is its capacity to execute faster through parallel processing. This 

allows for quicker model training and prediction. Additionally, XGBoost offers portability, meaning it 

can be easily implemented on different platforms and systems. 

XGBoost, a popular gradient boosting algorithm, employs decision trees as its base learners. Decision 

trees are relatively straightforward models that partition the input space into distinct regions and assign 

a specific value to each region. This partitioning allows decision trees to capture complex relationships 

and make predictions based on the selected region. Multiple decision trees are sequentially built and 

combined to improve the overall predictive performance. In XGBoost, these trees are often shallow, 

meaning they have a limited depth. This helps prevent overfitting and makes the algorithm more efficient 

[17]. 

The XGBoost algorithm operates within the gradient boosting frame, which aims to optimize a specified 

loss function. It achieves this by reiteratively appending new models that correct the errors made by 

existing models. The accomplishment of this task is done by evaluating the slope of the loss function in 

relation to the projections made by the model and using this information to update the model in a way 

that minimizes the loss. To control the complexity of the model and prevent overfitting, XGBoost 

incorporates regularization techniques. Regularization terms are added to the objective function, 

penalizing complex models and encouraging simpler, more generalizable solutions. 

XGBoost is built for quick and effective performance, utilizing simultaneous tasks and networked 

computers to manage big data and speed up the training of models. Additionally, XGBoost employs tree 

pruning, which eliminates unnecessary splits that do not contribute significantly to the model's 

predictive power. This results in more compact and efficient trees, reducing the risk of overfitting. 

The XGBoost algorithm follows a series of steps to build its predictive model: 

1. Initial Prediction and Residual Calculation: The algorithm begins by making an initial 

prediction based on the available features. To evaluate the performance of a predictive model, 

the difference between the predicted value and the observed value is calculated, which gives 

rise to residuals. 

2. Building XGBoost Trees: Each tree in the XGBoost model starts with a single leaf, and all the 

residuals are assigned to that leaf. The algorithm then calculates a similarity score for this leaf, 

which measures how well the residuals are explained by the leaf's predicted value. 

3. Pruning the Tree: The tree is pruned to optimize its structure and prevent overfitting. This 

involves evaluating the impact of removing each leaf and its corresponding branches and 

removing those that do not contribute significantly to improving the model's performance. 

4. Output Calculation: The output value for each leaf is calculated based on the residuals assigned 

to that leaf. This value represents the contribution of this specific leaf to the final prediction. 
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5. Final Prediction: To make predictions using the trained XGBoost model, the output from each 

tree is multiplied by a learning rate (a hyperparameter that controls the contribution of each tree) 

and added to the initial prediction. This aggregation process merges the predictions from each 

tree in the model to arrive at a final value or classification. 

By following these steps, the XGBoost algorithm iteratively improves the model's accuracy by 

sequentially adding trees that focus on reducing the residuals from previous iterations. 

B. 3. Random Forest 

The Random Forest algorithm is an ensemble learning method that leverages multiple decision trees to 

make predictions. During the training phase, the algorithm constructs many decision trees. Each decision 

tree is trained on a different subset of the data, using random feature subsets. 

When making predictions, the Random Forest algorithm combines the predictions of all the individual 
decision trees. For classification tasks, the mode of the predicted classes across the trees is taken as the 

final prediction. In regression tasks, the average prediction across the trees is used. This aggregation of 

predictions from multiple decision trees helps to improve the accuracy and robustness of the Random 

Forest algorithm [18]. 

Random Forest leverages the collective wisdom of these individual decision trees to enhance overall 

accuracy. Random Forest utilizes two primary methods, bagging and feature randomness, to infuse 

variety into the group. 

The process of bagging entails instructing individual decision trees using distinct, randomly selected 

subsets of the training data. This approach enables multiple trees to acquire knowledge from diverse 

data subsets, thereby mitigating the risk of overfitting and enhancing the overall generalization capacity 

of the model. Incorporating feature randomness ensures that each tree considers only a randomly 

selected subset of features when deciding how to split. By introducing this randomness, Random Forest 

prevents any single feature from dominating the decision-making process and promotes the exploration 

of different feature combinations [19]. 

Random Forest offers several advantages. It tends to achieve high accuracy due to the collective 

decision-making of multiple trees. It is also robust to noise in the data, as the majority vote or average 

prediction helps mitigate the impact of outliers. The use of Random Forest can offer valuable insights 

regarding the importance of features, enabling analysts to comprehend which features have the greatest 

impact on the predictions. Furthermore, Random Forest is effective in handling high-dimensional data 

with numerous features. 

However, there are some considerations when using Random Forest. Constructing multiple decision 

trees means that training a Random Forest model can require extensive computing, especially for large 
amounts of data. The complex inner workings of Random Forest can also make it challenging to interpret 

compared to simpler models. Additionally, tuning the hyperparameters of Random Forest requires 

careful experimentation to achieve optimal performance. 

C. VOTING METHOD 

A voting classifier represents a form of ensemble learning method where multiple machine learning 

models are combined to make a final prediction. In this technique, each model is trained independently 

on a subset of the dataset, and their respective predictions are then aggregated to derive a final decision. 

Two categories of voting classifiers are distinguished: hard voting and soft voting. 

The hard voting combination rule for class labels means picking what most classifiers agree on the most, 
which is a mere count of votes. [20]. This rule is commonly used in bagging. In binary settings, this 
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approach is like the typical Condorcet method—whichever class wins head-to-head against all others 

becomes the chosen one. 

Soft voting combination rules in machine learning refer to a method of combining the predictions of 

multiple base classifiers. Each base classifier provides a continuous output, which represents the 

probability distribution over the possible outcomes for a given input. The soft voting combination rule 

involves polling the continuous outputs generated by each base classifier through the application of 

functions such as average, maximum, or minimum. 

To determine the final prediction, the function is applied to the predicted probabilities, and the class 

label chosen being the one that maximizes the function's value [21]. Among the different functions, the 

average is considered as the most potent in terms of predictive efficacy. When using soft voting, the 

continuous outputs of the base classifiers are first converted into probability distributions. These 

probability distributions are then averaged, and the definitive prediction is made on the basis of averaged 

probabilities. This approach allows for a more robust prediction by considering the collective knowledge 

of multiple models. It can help improve the accuracy and reliability of predictions in machine learning 

tasks. 

Weighted voting is a voting technique that allows for the adjustment of the weights assigned to different 

base models. Unlike majority voting, where all models have equal weight, weighted voting assigns 

varying levels of importance to different models [22]. As a result, the predictions of models with higher 

weights are considered multiple times and have a more significant impact on the final decision. This 

approach takes into account the unique strengths and weaknesses of each model, providing a more 

nuanced approach to decision-making. By assigning variable weights, the most reliable and accurate 

predictions can have a greater influence on the final outcome. This is particularly advantageous when 

certain models have demonstrated superior accuracy or expertise in specific domains. Weighted voting 

offers a flexible and adaptable framework for prediction, allowing for a more personalized and efficient 

approach. 

D. NELDER-MEAD ALGORITHM 

The Nelder-Mead algorithm, also referred to as the downhill simplex method, is a widely used 

optimization algorithm employed to locate the minimum of a function in a multidimensional space. The 

algorithm was developed by John Nelder and Roger Mead in 1965 and is particularly advantageous for 

scenarios where the objective function lacks differentiability or gradient information is unavailable. 

This algorithm functions by maintaining a simplex, which is a geometric shape that extends the concept 

of a triangle to higher dimensions. It then iteratively adjusts the vertices of the simplex to gradually 

converge towards the minimum of the objective function. During each reiteration, the algorithm 

evaluates the objective function at the vertices of the simplex and subsequently applies operations like 

reflection, expansion, contraction, or shrinkage to update simplex [23]. 

The Nelder-Mead algorithm is relatively straightforward to implement and does not necessitate the 

computation of derivatives, making it suitable for a wide array of optimization problems. Nevertheless, 

its efficiency may not be on par with certain other optimization algorithms, particularly in high-

dimensional spaces or for functions with intricate geometries. 

Figure 2 illustrates the methodology of the original Nelder-Mead algorithm and its effectiveness in 

achieving the optimal solution. The algorithm utilizes four parameters, -specifically, reflection, 

expansion, contraction, and simplex size- to manipulate the simplex within the design space. This 

manipulation is dependent on the values present at both the vertices and the center of the triangle [24].  
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Figure 2. Nelder-Mead Simplex Method [24] 

As depicted in Figure 2, the shape is a closed N-dimensional object in space, with line edges intersecting 

at N + 1 vertices. The object's motion consists of a reflection, creating a new vertex and simplex. The 

direction of the reflection and the selection of the new vertex are contingent on the worst point's 

placement in the simplex. The new vertex is referred to as the complement of the worst vertex. If a 

newly added vertex is the worst point of the new simplex, the algorithm oscillates between it and the 

previous worst point. To find the next new point, the second worst point is used in this case. The simplex 

moves through the design space and its center moves towards the endpoint. The edges of the simplex 

are allowed to expand and contract, moving towards the optimum [25]. 

E. EVALUATION METRICS 

The four essential attributes of the confusion matrix, which clearly illustrates the actual and predicted 

classes as shown in Table 1, form the basis of the evaluation metrics we typically use. 

Table 1. Confusion Matrix 

  

Predicted Class 

Attack (0) Normal (1) 

A
c
tu

a
l 

C
la

ss
 

Attack (0) TN FP 

Normal (1) FN TP 

In this context, we establish the confusion matrix as represented in Table 1, where the abbreviations TN 

and TP correspond to true negatives and true positives, respectively. These terms denote the correct 

classification of attack and normal samples. Conversely, a false negative (FN) denotes a 

misclassification of a normal sample as an attack, while a false positive (FP) indicates the erroneous 

classification of an attack sample as normal [26]. 

In this paper, we evaluate various methods using three essential metrics: Accuracy, F1 Score, and 

Matthews Correlation Coefficient (MCC) [27]. We will now delve into the exact meanings of these 

metrics. 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
         (1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
          (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
          (3) 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
        (4) 

 

𝑀𝐶𝐶 =
(𝑇𝑃×𝑇𝑁)−(𝐹𝑃×𝐹𝑁)

√(𝑇𝑃+𝐹𝑃)×(𝑇𝑃+𝐹𝑁)×(𝑇𝑁+𝐹𝑃)×(𝑇𝑁+𝐹𝑁)
       (5) 

F. PROPOSED METHODOLOGY 

The study involved three phases: first, we conducted data preprocessing to prepare the dataset for binary 

classification. The dataset was divided into two sets: the test set and the training set. The test set was 

created to evaluate the performance of the models and measure their generalization ability. It consisted 

of 20% of the total dataset. On the other hand, the training set was composed of the remaining 80% of 

the data and served as the input for model training and parameter optimization. In the second phase, we 

utilized base classifiers for classification purposes. Based on their accuracy rates, we selected the top 

three algorithms from the outcomes. Finally, in the third stage, we analyzed accuracy performance by 

combining results from base classifiers using soft voting. Moreover, we optimized hyperparameters at 

the classifier-level to further improve accuracy performance. 

The first phase involved data cleaning, feature extraction and feature selection.  

Data cleaning is the pivotal procedure of detecting and rectifying, or eliminating, discrepancies, 

disparities, and inaccuracies within datasets. This indispensable phase in data scrutiny holds paramount 

significance in guaranteeing the precision and dependability of the outcomes derived from the data. Data 

cleaning contains a range of activities, including identifying missing or duplicate data, correcting 

spelling and formatting errors, and removing outliers and irrelevant data [28]. The goal of data cleaning 

is to ensure that the data is consistent, complete, and accurate, and that it is suitable for analysis. In this 

study, we removed repetitive rows from the KDD99 dataset which reduced the number of rows to 

145586. We also removed rows with an empty "service" column from the UNSW-NB15 dataset which 

resulted in a dataset with 116352 rows. 

Feature extraction is critical to analyzing data, as it selects and transforms relevant information from 

raw data. This procedure generates a set of features that can be used effectively by machine learning 

algorithms. Its main objective is to identify and extract the most significant and related features from a 

dataset, which, in turn, eases the training of machine learning models. One of the primary advantages of 

feature extraction lies in its capacity to decrease data dimensionality. Through the selection of highly 

informative features, it simplifies the analysis and processing procedures. Furthermore, this approach 

aids in the elimination of noise and irrelevant information from the dataset, resulting in enhanced 

accuracy and performance of machine learning models by prioritizing the most crucial aspects of the 

data [29]. 
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In this study, datasets are prepared for training and testing using Principal Component Analysis (PCA) 

to reduce dimensionality and one-hot encoding for categorical features. First, features of either floating-

point or integer data types are selected using PCA, after which a minimum variance threshold is 

established to determine the number of principal components to retain. The chosen features are then 

subjected to standard scaling and PCA transformation. Subsequently, we identify categorical features 

and use CountVectorizer to one-hot encode them. We then combine the transformed numerical and 

encoded categorical features, converting them into a data frame.  

Feature selection is the identification and selection of the most significant features from a given dataset 

that can be employed to establish a strong predictive model [30]. It is crucial to select only the pertinent 

features to avoid complexity and boost the model's accuracy. In the context of feature selection, the 

XGBoost model calculated feature importance to determine the usefulness of each feature in 

constructing the boosted decision trees. To optimize the model's effectiveness, features with a score 

below the threshold of 0.01 are eliminated from the dataset. By strategically discarding these less 

influential features, the model's performance is enhanced, ultimately leading to more accurate and 

reliable predictions. Following the process of feature selection, a total of 10 features have been selected 

in the KDD99 dataset, while the UNSW-NB15 dataset has undergone feature selection resulting in the 

selection of 11 features. The target label (normal and attack) is added to the dataset before data splitting. 

Then, the process of data splitting has then been initiated. 

Stratified sampling is employed to uphold a balanced representation of each class in the target variable 

within both the training and test sets. This method serves to mitigate any potential bias towards the 

predominant class, hence fostering a more equitable model. In this particular scenario, 80% of the data 

is allocated for training purposes, while the remaining 20% is reserved for testing. 

During the second phase of the study, binary classification was carried out by implementing several 

base classifiers, including Random Forest, K-Nearest Neighbor, and XGBoost. The hyperparameters 

utilized for these base classifiers are meticulously outlined in Table 2 for reference and transparency. 

Table 2. Base Learner Parameters 

Methods Parameters 

KNN n_neighbours = 3 

Random Forest n_estimators = 10 

XGBoost 
max_depth=3, n_estimators=100, objective='binary: 

logistic', booster='gbtree', n_jobs=2, random_state=1 

 

Moving on to the third phase, the outcomes of the base classifiers, namely Random Forest, K-Nearest 

Neighbor, XGBoost, were effectively combined using the soft voting technique. This approach allowed 

for the aggregation of the predictions from each classifier, ultimately yielding a consolidated and robust 

decision based on the collective wisdom of the individual classifiers. 

In the context of soft voting, it is important to acknowledge that the base classifiers often exhibit varying 
levels of performance. This implies that assigning equal importance to each classifier during the 

aggregation of results may not yield the optimal outcome. Consequently, it becomes advantageous to 

assign weights to the classifiers based on their individual performance. However, it is crucial to 

accurately determine these weights, as they significantly influence the overall performance of the 

ensemble. To address this, the Nelder-Mead algorithm is proposed in this study to precisely adjust the 

weights of the base learners, thereby optimizing the performance of the ensemble. 

Our objective is to settle the optimum weight combination for the ensemble classifier, maximizing its 

performance on a dataset. The proposed approach entails constructing a soft voting classifier that 

comprises pre-trained base classifiers and subsequently evaluating its performance on the dataset. 

Subsequently, the minimize function is implemented to improve the accuracy performance of the 
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ensemble classifier through minimizing the classification error. Only two weights are optimized due to 

their relative importance and the potential for overfitting with additional parameters. Optimization 

begins with initial weight values of 1.0, and the search space is constrained between 0.5 and 1.5. This 

process is iteratively refined through the Nelder-Mead algorithm, gradually converging towards the 

optimal weight configuration.  

 

Figure 3. Proposed Methodology 

 

IV. EXPERIMENTAL RESULTS 
 

In this study, the experiments were conducted on a computer system consisting of an Intel® Core™ i7-

8550U CPU running at a clock speed of 1.80 GHz. The system had 12 GB of RAM and was operating 

on the Windows 10 Enterprise Edition (64 bit) operating system. 

To implement the proposed methodology, Python version 3.10.9 was used. The machine-learning 

classifiers employed in this research were implemented using the scikit-learn library version 1.2.1 [31] 

and the scipy library version 1.10.0 [32]. 

Tables 3-4 show the remarkable effectiveness of our KDD99 binary classification model, as evidenced 

by its exceptional overall results. These results are characterized by their high accuracy, Matthews 

Correlation Coefficient (MCC) and F1 scores. Within the training set, the Random Forest (RF) model 

reigns supreme, achieving near flawless results across all metrics. However, there is a slight drop in 

performance for all models when moving to the test set. Nevertheless, the Nelder-Mead variants show 

commendable resilience and adaptability to unseen data, maintaining virtually identical scores even in 

the face of this decline. 
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Table 3. KDD99 Training Results 

Classifier Accuracy MCC F1 

RF 99.992% 99.984% 99.992% 

Nelder-Mead 3 (KNN - RF) 99.977% 99.952% 99.977% 

Soft Voting 99.976% 99.950% 99.976% 

Nelder-Mead 1 (KNN - XGB) 99.976% 99.950% 99.976% 

Nelder-Mead 2 (RF - XGB) 99.976% 99.950% 99.976% 

XGBoost 99.973% 99.944% 99.973% 

KNN 99.882% 99.752% 99.882% 

Table 4. KDD99 Test Results 

Classifier Accuracy MCC F1 

Nelder-Mead 1 (KNN - XGB) 99.856% 99.699% 99.856% 

Nelder-Mead 2 (RF - XGB) 99.856% 99.699% 99.856% 

Nelder-Mead 3 (KNN - RF) 99.852% 99.691% 99.852% 

Soft Voting 99.845% 99.677% 99.845% 

RF 99.828% 99.641% 99.828% 

XGBoost 99.818% 99.620% 99.818% 

KNN 99.811% 99.605% 99.811% 

Tables 5-6 demonstrate the commendable performance of our UNSW-NB15 binary classification 

model, exhibiting a substantial degree of accuracy, Matthews Correlation Coefficient (MCC), and F1 

scores. Notably, the Random Forest (RF) algorithm emerged as the most proficient classifier within the 

training set. Despite a decline in overall performance, the Nelder-Mead variants exhibited a remarkable 

ability to maintain their supremacy across all metrics during the testing phase. This observation suggests 

that this particular ensemble possesses a remarkable level of generalizability, effectively translating its 

success in training to real-world scenarios involving previously unseen data. The relative ranking of the 

models remained largely consistent between the training and testing stages, with RF and the other 

Nelder-Mead variants continuing to exhibit strong performance. These results indicate that the Nelder-

Mead algorithm effectively navigates the optimization landscape, allowing us to determine the weight 

combination that maximizes the performance of the ensemble classifier. 

Table 5. UNSW-NB15 Training Results 

Classifier Accuracy MCC F1 

RF 99.826% 99.536% 99.826% 

Nelder-Mead 3 (KNN - RF) 99.635% 99.025% 99.634% 

Nelder-Mead 1 (KNN - XGB) 99.601% 98.936% 99.601% 

Nelder-Mead 2 (RF - XGB) 99.601% 98.936% 99.601% 

Soft Voting 99.560% 98.824% 99.559% 

XGBoost 99.003% 97.335% 99.001% 

KNN 98.612% 96.295% 98.611% 
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Table 6. UNSW-NB15 Test Results 

Classifier Accuracy MCC F1 

Nelder-Mead 1 (KNN - XGB) 97.662% 93.733% 97.653% 

Nelder-Mead 3 (KNN - RF) 97.649% 93.699% 97.640% 

Nelder-Mead 2 (RF - XGB) 97.637% 93.664% 97.627% 

Soft Voting 97.602% 93.571% 97.593% 

RF 97.439% 93.116% 97.421% 

XGBoost 97.426% 93.089% 97.412% 

KNN 97.164% 92.426% 97.161% 

In the KDD99 dataset, the training time was typically quickest for KNN and RF, followed by XGBoost 

and Soft Voting. It's worth mentioning that XGBoost and RF had a very short estimation time for the 

training set, while there was a more noticeable difference in the case of KNN and Soft Voting. We 

noticed similar patterns when it came to estimating the test set time, with XGBoost and RF once again 

showing the fastest performance, while KNN performed relatively slower. 

Table 7. KDD99 Timing Results 

Classifier 
Training Duration 

(mm:ss.000) 

Training Set Estimation Time 

(mm:ss.000) 

Test Set Estimation Time 

(mm:ss.000) 

Soft Voting 00:16.429352 00:02.843084 00:01.359055 

XGBoost 00:13.115712 00:00.176238 00:00.062485 

RF 00:02.624386 00:00.187456 00:00.062484 

KNN 00:00.718582 00:09.750892 00:01.873693 

Nelder-Mead 1  

(KNN-XGB) 
N/A 00:03.577284 00:01.249709 

Nelder-Mead 2  

(RF-XGB) 
N/A 00:02.452550 00:01.062249 

Nelder-Mead 3  

(KNN-RF) 
N/A 00:03.742623 00:00.651294 

Table 8 presents the timing analysis outcomes for the UNSWNB15 dataset. According to the provided 
table, the training duration for all classifiers was relatively short. The training times varied, with KNN 

taking the shortest time of 0.789 seconds, while Soft Voting had the longest training duration of 11.327 

seconds. This suggests that all the classifiers are efficient to train. The training set estimation time was 

also relatively short for all classifiers, ranging from 0.137 seconds for XGBoost to 6.264 seconds for 

KNN. Similarly, the test set estimation time was also relatively short for all classifiers, ranging from 

0.031 seconds for RF to 2.012 seconds for KNN. This suggests that all the classifiers are able to quickly 

make predictions on training and test sets.  
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Table 8. UNSW-NB15 Timing Results 

Classifier 
Training Duration 

(mm:ss.000) 

Training Set Estimation 

Time 

(mm:ss.000) 

Test Set Estimation 

Time 

(mm:ss.000) 

Soft Voting 00:11.327153 00:02.272840 00:01.021486 

XGBoost 00:10.436653 00:00.136623 00:00.049223 

RF 00:01.996077 00:00.140589 00:00.031241 

KNN 00:00.789365 00:06.264449 00:02.012055 

Nelder-Mead 1  

(KNN-XGB) 
N/A 00:03.296877 00:00.497722 

Nelder-Mead 2  

(RF-XGB) 
N/A 00:02.490687 00:01.028049 

Nelder-Mead 3  

(KNN-RF) 
N/A 00:03.617227 00:00.519629 

Table 9 shows that the Nelder-Mead optimization is much faster for a smaller number of features. In the 

KDD99 dataset, the search time for 10 features is only 41 seconds, while the search time for 41 features 

is over 58 minutes. The Nelder-Mead optimization technique likely serves to identify the lowest or 

highest point of a target function within a space with multiple dimensions. The method operates quickly 

and is applicable for multidimensional optimization tasks. However, it does not depend on a gradient, 

and therefore, convergence may be slow on datasets with a larger number of features. The convergence 

rate of the method can therefore be slow, especially for highly non-linear functions or functions with 

many local minima [33]. 

Table 9. Search Timing Results with Nelder-Mead Algorithm by Number of Features 

Table 10 displays the confusion matrices for the Nelder-Mead optimized model on the KDD99 and 

UNSW-NB15 datasets. The model attained remarkable overall accuracy, with KDD99 achieving 

99.856% and UNSW-NB15 reaching 97.662%. This level of accuracy confirms the effectiveness of the 

model in precisely classifying network traffic occurrences as normal or attack. 

Our model demonstrated high rates of True Negatives (TN), indicating its ability to accurately detect 

actual attacks. It accurately classified 11525 attacks in KDD99 and identified 17244 attacks in UNSW-

NB15. This indicates that our model is effective in identifying and distinguishing malicious network 

behavior. Despite registering low False Negative (FN) rates in two sets, our model displayed superior 

performance on KDD99. It identified only 16 normal instances as attacks, signifying remarkable control 

over false alarms. However, 340 normal instances were classified as attacks on UNSW-NB15, indicating 

misclassifications that require further investigation. 

Dataset Total Number of Features Optimization Method 
Search Duration 

(mm:ss.000) 

KDD99 
41 Nelder-Mead 1 (KNN - XGB) 58:29.617903 

10 Nelder-Mead 1 (KNN - XGB) 00:41.802781 

UNSW-NB15 
49 Nelder-Mead 1 (KNN - XGB) 31:14.104041 

11 Nelder-Mead 1 (KNN - XGB) 00:47.260621 
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Our model demonstrated strong performance in accurately identifying normal network traffic, as 

indicated by its high True Positive (TP) rates. In the KDD99 dataset, it correctly detected 17551 

instances of normal traffic, while in the UNSW-NB15 dataset, it accurately identified 5483 normal 

instances. This highlights our model's ability to distinguish normal network behavior effectively. 

Additionally, the model only identified 26 attack instances as normal in KDD99. However, it is worth 

noting that our model had a relatively higher False Positive (FP) rate of 204 on the UNSW-NB15 dataset. 

This suggests that there were instances where attacks were missed, falsely classified as normal traffic. 

Although the model performed well overall, there is room for improvement to decrease the false positive 

rate and accurately identify more attacks. 

Table 10. Test Dataset Confusion Matrices for Nelder-Mead 1 (KNN - XGB) 

Test Dataset  

Confusion Matrices 

Predicted Class 

KDD99 UNSW-NB15 

Attack Normal Acc Attack Normal Acc 

Actual 

Class 

Attack 11525 26 

99.856% 

17244 204 

97.662% 

Normal 16 17551 340 5483 

Table 11 presents a comprehensive comparative analysis of the performance of intrusion detection 

models on 2 benchmark datasets: UNSW-NB15 and NSL-KDD. Accuracy, which measures the 

proportion of correctly classified intrusion events, is used as the evaluation metric. Our novel model 

demonstrates exceptional performance on both datasets, achieving an impressive accuracy rate of 

97.66% on UNSW-NB15 and an impressive 99.85% on KDD99. These statistically significant results 

exceed the accuracy of all other models, which range from 85.2% to 99.81%. 

In summary, Table 11 presents a comparative analysis that clearly demonstrates the superior 

performance of our model with fewer features. This indicates that our model can effectively detect 

intrusion using a smaller number of features, which helps to mitigate overfitting and enhance 

generalization, leading to more robust and reliable results. The model's accuracy on both datasets, 

coupled with its implementation of feature selection techniques, positions it as an effective solution for 

securing network environments. 
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Table 11. Comparison with the Other Proposed Methods 

Authors Datasets 
Feature 

Selection 

Number of 

Selected 

Features 

Algorithms 

Most 

Effective 

Method 

Best 

Result 

(Accuracy) 

Yao et al. [5] UNSW-NB15 No N/A 

XGB, LGBM, 

RF, Soft 

Voting 

Soft Voting 95.23% 

Shen et al. [6] 

NLS-KDD 

Yes 

20 SVM, KNN, 

DT, Soft 

Voting 

Soft Voting 

97.49% 

UNSW-NB15 19 94.62% 

Swami et al. 

[7] 

NSL-KDD 

No 

N/A 
CART 

(Classification 

& Regression 

Tree), MLP, 

NB, RF, 

KNN, Soft 

Voting 

Soft Voting 

99.68% 

UNSW-NB15 N/A 89.29% 

Zhou et al. [8] NSL-KDD Yes 10 

DT, RF, 

ForestPA, 

Voting 

Voting 99.81% 

Gao et al. [10] NSL-KDD Yes 17 

DT, RF, 

KNN, DNN,  

MultiTree, 

Voting 

Voting 85.2% 

Proposed 

Model 

KDD99 

Yes 

10 

XGB, RF, 

KNN, Soft 

Voting, 

Nelder-Mead 

Optimized 

Classifier 

Level Soft 

Voting 

Nelder-

Mead 

Optimized 

Classifier 

Level Soft 

Voting 

99.85% 

UNSW-NB15 11 97.66% 

 

V. CONCLUSION 

This study identified the limitation of relying on a single classification algorithm to detect cyber-attacks. 

The objective of the study was to enhance the accuracy of attack detection by combining the detection 

capabilities of multiple classifiers. By leveraging the strengths and diversity of multiple classifiers, it is 

aimed to create an ensemble model that can provide more accurate and robust predictions in detecting 

attacks. This approach allows us to harness the collective knowledge and capabilities of different 

classifiers to improve the overall performance of the attack detection system.  
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In this study, ensemble classification for intrusion detection is proposed using weighted soft voting with 

KNN, XGBoost, and Random Forest base models. A powerful intrusion detection framework was 

proposed that utilizes soft voting classifier-level weights optimized by the Nelder-Mead algorithm and 

incorporates feature selection. 

This study demonstrated that optimizing classifier-level weights through the Nelder-Mead algorithm 

could enhance combinatory performance, yielding comparable results with fewer features. The focus of 

this paper was to utilize a heuristic algorithm for fusing the base learners to enhance the performance of 

the ensemble. Future research will focus on refining the existing heuristic algorithms or developing new 

intelligent heuristic algorithms to further strengthen the ensemble's performance. Additionally, 

exploring alternative approaches for fusing base learners will be a key direction for future work. 
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