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Abstract  

We try to find the semi-analytical approximate solutions for the system of partial differential equations 

by using a newly developed scheme. The optimal perturbation iteration method is introduced and then 

applied to a newly modified coupled Drinfel’d-Sokolov-Wilson equation. Classical perturbation theory 

and optimization techniques are combined to construct this method. We will deeply analyze an example 

to prove the power of the proposed method, namely the optimal perturbation iteration method. With 

the theorem and applications, we see that the present study shows that the new method converges 

fast to the accurate analytical solutions of the considered equations at even the first two-three 

iterations. 

 

İkili Drinfel’d-Sokolov-Wilson Denklemlerinin Modifiyesi ve Yaklaşık 
Çözümleri İçin Optimal Perturbasyon İterasyon Metodu 

Anahtar kelimeler 

Optimal perturbasyon 

iterasyon yöntemi; 

Kısmi diferansiyel 

denklemler sistemi; 

solitonlar; yarı-analitik 

metotlar 

 

 

Öz 

Bu araştırma makalesinde, kısmi diferansiyel denklemler sistemi için yeni geliştirilen bir metot 

yardımıyla yarı analitik çözümler bulmaya çalışıyoruz. Optimal perturbasyon iterasyon yöntemini 

tanıtıyor ve sonra yeniden modifiye edilen ikili Drinfel’d-Sokolov-Wilson denklemine uyguluyoruz. Klasik 

perturbasyon teorisi ve optimizasyon teknikleri birleştirilerek bu yöntemi inşa ediyoruz. Optimal 

perturbasyon iterasyon olarak önerilen metodun gücünü göstermek için özel bir örneği derinlemesine 

irdeliyoruz. Teorem ve uygulamalar önerilen tekniğin ele alınan denklemler için iterasyonun daha ilk 

basamaklarında tam çözüme hızlı bir şekilde yaklaştığını göstermektedir. 

 

© Afyon Kocatepe Üniversitesi 

 

1.  Introduction 

The importance of nonlinear system of partial 

differential equations (NPDEs) is obvious in science 

and engineering. Similarly, the solitons and their 

equations (in terms of NPDEs) are distinguished 

subjects in the field of physics and applied sciences. 

In recent years, a large number of physical or mental 

efforts have been made to scrutinize various 

nonlinear soliton equations. The exact analytical 

solutions of nonlinear wave equations assist to 

comprehend the behavior and characteristics of 

nonlinear equations of solitons. Because of that, 

seeking analytical or approximate solutions of 

nonlinear wave equations have been always an 

important and interesting subject. Up to now, there 

have been many methods to investigate these types 

of NPDEs. Wadati Miki and Kimiaki Konno deeply 

analyzed some relationships among inverse 

method, Bäcklund transformation and an infinite 

number of conservation laws on the NPDEs (Miki 

and Konno 1975).  Guo Boling and their co-authors 

have examined nonlinear Schrödinger equation 

with the help of generalized Darboux 

transformation and rogue wave solutions (Boling et 

               Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 
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al. 2012).  Manafian and Lakestani proved the 

solitary wave and periodic wave solutions for 

variants of the KdV-Burger equation (Manafian and 

Lakestani 2013). Manafian and Zamanpour used 

Exp-function method for analytical treatment of the 

coupled Higgs equation and the Maccari system 

(Manafian and Zamanpour 2013). In 2007, Shang 

have proposed Backlünd transformation, Lax pairs 

and explicit exact solutions for the shallow water 

waves equation (Shang 2007). Many other 

techniques can also be given to deal with these 

types of NPDEs (Matveed and Salle 1991, Malfliet 

1992, Shen and Pan 2003, İnan 2019). 

In this section, we construct some algorithms by 

using optimal perturbation iteration method for the 

following system of partial differential equations 

(PDE): 

𝑢𝑡 + 𝑝𝑣𝑣𝑥 + 𝑣
2𝑣𝑥 = 0,

𝑣𝑡 + 𝑞𝑣𝑥𝑥𝑥 + 𝑟𝑢𝑣𝑥 + 𝑠𝑣𝑢𝑥 = 0
                      (1) 

where 𝑝, 𝑞, 𝑟, 𝑠are some nonzero parameters. The 

last term in the first equation can be used to 

decrease the oscillations of the solitons and it can 

be used to model a modified coupled Drinfel’d-

Sokolov-Wilson equation. These types of equations 

are usually encountered in many different fields of 

science and engineering.  Fan Engui and Hongqing 

Zhang have used homogeneous balance method to 

analyze this type of problem (Fan and Zhang 1998).  

Abdul-Majid Wazwaz found multiple-soliton 

solutions by Hirota’s bilinear method and by the 

tanh–coth method (Wazwaz 2007).  Let us suppose 

that we have following initial conditions for the Eq. 

(1): 

𝑢(𝑥, 0) = 𝑒𝑥 ,

𝑣(𝑥, 0) = 𝑒−𝑥.
     (2)                                             

In order to deal with these types of PDEs, some 

researchers have developed certain efficient 

methods (Baskonuş et al., 2013; Inç, 2008; Pandır et 

al.,2017; Tülüce et al.,2016).  In the next section we 

show how to obtain a reliable iterative techique for 

solving these types of systems. 

2. OPIM for the System of Partial Differential 
Equations 

Optimal perturbation iteration method (OPIM) and 

optimal perturbation iteration algorithms or shortly 

OPIAs have been lately established with the help of 

the classical perturbation theory (Bildik and Deniz, 

2017; Bildik and Deniz, 2018).  OPIAs and 

modifications are all devised to deal with the 

nonlinear problems. Because there is no need to 

deal with linear differential equations. OPIM has 

been implemented to wide range of physical 

problems such as heat transfer, Burger’s, Lane-

Emden type equations, etc (Deniz, 2017; Bildik and 

Deniz, 2017; Bildik and Deniz, 2018).  We now try to 

create an algorithm for the aforementioned 

problem: 

a)  The Eqs. (1) can be reconsidered with a 

perturbation parameter 𝜀  as: 

 

𝐹1(𝑢𝑡 , 𝑣𝑥 , 𝑣, 𝜀) = 0

𝐹2(𝑣𝑥𝑥𝑥 , 𝑢𝑥 , 𝑣𝑡 , 𝑣𝑥 , 𝑢, 𝜀) = 0
           (3) 

 

and 𝜀 can be furnished into the Eq. (3) : 

 

 

𝐹1(𝑢𝑥 , 𝑢𝑡 , 𝑣𝑥 , 𝜀) = 𝑢𝑡 + 𝑝𝜀𝑣𝑣𝑥 + 𝜀𝑣
2𝑣𝑥 = 0

𝐹2(𝑢𝑥𝑥𝑥 , 𝑢𝑥 , 𝑣𝑡 , 𝑣𝑥, 𝜀) =

𝑣𝑡 + 𝑞𝑣𝑥𝑥𝑥 + 𝜀(𝑟𝑢𝑣𝑥 + 𝑠𝑣𝑢𝑥) = 0

       (4) 

 

Now, to eliminate the linear terms, (4) can be 

separated as: 

 

𝐹1 = 𝑆1 + 𝑅1                                       (5) 

𝐹2 = 𝑆2 + 𝑅2 .                                    (6) 

 

Doing the above modification will yield easier 

calculations.  We denote generally linear part as 𝑆. 

Also, to represent the nonlinear terms we use 𝑅. 

One actually will interest with  𝑅. For example, we 

can select 

 

𝑅(𝑣𝑥, 𝑣, 𝜀) = 𝜀𝑝𝑣𝑣𝑥 + 𝜀𝑣
2𝑣𝑥      (7) 

 

and        

 

𝑆(𝑢𝑡) = 𝑢𝑡      (8)
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for the considered PDE. 

 

b) To start iterations, we need first 

straightforward perturbation series and the 

following approximations:  

 

𝑢𝑛+1 = 𝑢𝑛 + 𝜀(𝑢𝑐)𝑛  ,                                (9i)    

𝑣𝑛+1 = 𝑣𝑛 + 𝜀(𝑣𝑐)𝑛                  (9ii) 

 

where (𝑢𝑐)𝑛 and (𝑣𝑐)𝑛 are the nth correction terms. 

We then replace equations (9i) - (9ii) into (4) to get 

an algorithm for OPIM.  After substituting,  one 

requires to use the Taylor series of these equations 

at𝜀 = 0 as can be calculated: 

 

 
𝐹 + 𝐹𝑢𝑡((𝑢𝑐)𝑛)𝑡𝜀 + 𝐹𝑣𝑥((𝑣𝑐)𝑛)𝑥𝜀

+𝐹𝑣((𝑣𝑐)𝑛)𝜀 + 𝐹𝜀𝜀 = 0
        ,                   

𝐹 + 𝐹𝑣𝑡((𝑣𝑐)𝑛)𝑡𝜀 + 𝐹𝑣𝑥((𝑣𝑐)𝑛)𝑥𝜀

+𝐹𝑣𝑥𝑥𝑥((𝑣𝑐)𝑛)𝑥𝑥𝑥𝜀 + 𝐹𝑢((𝑢𝑐)𝑛)𝑥𝜀 + 𝐹𝜀𝜀 = 0
   (10)     

 

or equivalently 

 

𝑅 + 𝑅𝑢𝑡((𝑢𝑐)𝑛)𝑡𝜀 + 𝑅𝑣𝑥((𝑣𝑐)𝑛)𝑥𝜀

+𝑅𝑣((𝑣𝑐)𝑛)𝜀 + 𝑅𝜀𝜀 = −𝑆
   ,          

𝑅 + 𝑅𝑣𝑡((𝑣𝑐)𝑛)𝑡𝜀 + 𝑅𝑣𝑥((𝑣𝑐)𝑛)𝑥𝜀

+𝑅𝑣𝑥𝑥𝑥((𝑣𝑐)𝑛)𝑥𝑥𝑥𝜀 + 𝑅𝑢((𝑢𝑐)𝑛)𝑥𝜀 + 𝑅𝜀𝜀 = −𝑆
    

      (11) 

 

The following notations represents the above 

computations: 

 

𝑅𝜀 =
𝜕𝑅

𝜕𝜀
, 𝑅𝑢𝑡 =

𝜕𝑅

𝜕𝑢𝑡
,

𝑅𝑢𝑥 =
𝜕𝑅

𝜕𝑢𝑥
, 𝑅𝑣𝑥 =

𝜕𝑅

𝜕𝑣𝑥
, ⋯

.                 (12) 

 

By doing the essential computations for the 

considered problem, one has: 

 

((𝑢𝑐)𝑛)𝑡 = −𝑝(𝑣𝑛)𝑥(𝑣𝑛)

((𝑣𝑐)𝑛)𝑡 = −𝑞(𝑣𝑛)𝑥𝑥𝑥 − 𝑟(𝑣𝑛)𝑥(𝑢𝑛) − 𝑠(𝑢𝑛)𝑥(𝑣𝑛)
   

                                 (13) 

 

The above expressions are the optimal perturbation 

iteration algorithms (OPIA) for the system of partial 

differential equations. To initiate the OPIA 

iterations, 𝑢0 and 𝑣0 (initial functions) are chosen 

suitably with the help of the given conditions. 

 

c)  Using the OPIAs for the system of PDE, we can 

get the first (𝑢𝑐)𝑛 or (𝑢𝑐)0 .  If one needs more 

accurate results or optimal solutions, 

unknown parameters can be used as:  

 

𝑢𝑛+1 = 𝑢𝑛 + 𝑃𝑛(𝑢𝑐)𝑛
𝑣𝑛+1 = 𝑣𝑛 + 𝑃𝑛(𝑣𝑐)𝑛

.                        (14) 

 

where 𝑃0, 𝑃1, 𝑃2, …  are named as convergence-

control parameters. With the aid of those constants, 

one can check and set the convergence of the 

solutions. By iterating, one gets 

 

𝑢1 = 𝑢(𝑥, 𝑡; 𝑃0) = 𝑢0 + 𝑃0(𝑢𝑐)0
𝑣1 = 𝑣(𝑥, 𝑡; 𝑃0, 𝑃1) = 𝑣1 + 𝑃1(𝑣𝑐)1
       ⋮
𝑢𝑚(𝑥, 𝑡; 𝑃0, … , 𝑃𝑚−1) = 𝑢𝑚−1 + 𝑃𝑚−1(𝑢𝑐)𝑚−1
𝑣𝑚(𝑥, 𝑡; 𝑃0, … , 𝑃𝑚−1) = 𝑣𝑚−1 + 𝑃𝑚−1(𝑣𝑐)𝑚−1

. 

      (15) 

 

d) When 𝑢𝑚 , 𝑣𝑚  are substituted intothe 

equation (4), the overall problem will become:  

 

𝑅𝑒1(𝑥, 𝑡; 𝑃0, … , 𝑃𝑚−1) =

𝐹1((𝑢𝑚)𝑡 , (𝑣𝑚)𝑥 , 𝑣𝑚 , 𝜀) = 0,
𝑅𝑒2(𝑥, 𝑡; 𝑃0, … , 𝑃𝑚−1)

= 𝐹2((𝑣𝑚)𝑥𝑥𝑥 , (𝑢𝑚)𝑥, (𝑣𝑚)𝑡 , (𝑣𝑚)𝑥 , 𝑢𝑚 , 𝜀) = 0

  

                   (16) 

 

Apparently, when residuals are equal to zero, then 

our results are actually the exact solutions. 

Otherwise, we need minimize the functional as: 

𝐽1(𝑃0, … , 𝑃𝑚−1) = ∫ ∫ 𝑅𝑒1
2𝑏

𝑎

𝑇

0
(𝑥, 𝑡; 𝑃0, … , 𝑃𝑚−1)𝑑𝑥𝑑𝑡

𝐽2(𝑃0, … , 𝑃𝑚−1) = ∫ ∫ 𝑅𝑒2
2𝑏

𝑎

𝑇

0
(𝑥, 𝑡; 𝑃0, … , 𝑃𝑚−1)𝑑𝑥𝑑𝑡

 

                   (17) 

where 𝑎, 𝑏 and 𝑇 are elected from the boundaries of 

the PDEs. In order to find the unknown parameters, 

one can use 

 
𝜕𝐽𝑖

𝜕𝑃0
=

𝜕𝐽𝑖

𝜕𝑃1
= ⋯ =

𝜕𝐽𝑖

𝜕𝑃𝑚−1
= 0.                  (18) 
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3. Illustration 

In this section, we try to show the effectiveness of 

the proposed method. To do this we will solve the 

system of partial differential equations with the 

parameters 𝑝 = 3, 𝑞 = 2, 𝑟 = 2, 𝑠 = 1. 

One can reasonably use the initial conditions as 

initial functions 

𝑢(𝑥, 0) = 𝑒𝑥 ,

𝑣(𝑥, 0) = 𝑒−𝑥.
  

Then, progressing as mentioned in the previous 

section, one can reach the following first order 

approximate OPIM solutions 

                          

 𝑢1 = 𝑒
−𝑥𝑡 −

3𝑡𝑥2𝑃0

2
 

  𝑣1 = 𝑒
𝑥𝑡 +

3𝑡𝑥2𝑃0

2
                                         (19) 

 

Similarly, with the help of OPIA and the prefound 

terms, one can proceed as: 

 

𝑢2 = −𝑒
−𝑥 −

3𝑒−𝑥𝑥2𝑃0

2
− (

3𝑒−𝑥𝑥2

2
+
5𝑥3𝑃0

2

+
15𝑒−𝑥

8
𝑥4𝑃0

2
)𝑃1   

𝑣2 = 𝑡𝑒
𝑥 +

3𝑡𝑥2𝑃0

2
− (

−
3𝑒−𝑥𝑥2

2
−
7𝑥3𝑃0

2

−
17𝑒−𝑥

8
𝑥4𝑃0

2
)𝑡𝑃1 ,

                             (20)    

     
𝑢3 = 𝑢2

−

(

 
 
 
 
 

3𝑥2

2
+
9𝑥3𝑃0

2
+
13

8
𝑡𝑥4𝑃0

2 +
9𝑒𝑥𝑡𝑥3𝑃1

2

+
81

4
𝑥4𝑃0𝑃1 +

243

8
𝑥5𝑃0

2𝑃1 +
607𝑒𝑥

16
𝑥6𝑃0

3𝑃1

+
27

8
𝑥4𝑃1

2 +
81

4
𝑥5𝑃0𝑃1

2 +
1043

16
𝑒𝑥𝑥6𝑃0

2𝑃1
2

+
729

16
𝑡𝑥7𝑃0

3𝑃1
2 +

2581

128
𝑒𝑥𝑡𝑥8𝑃0

4𝑃1
2

+⋯ )

 
 
 
 
 

𝑡𝑃2
     

      (21) 

             

𝑣3 = 𝑣2 −

(

 
 
 
 

−
3𝑡𝑥2

2
−
9𝑥3𝑃0

2
−
13

8
𝑒𝑥𝑡𝑥4𝑃0

2 −
9𝑥3𝑃1

2

−
73

4
𝑥4𝑃0𝑃1 +

101

2
𝑡𝑒−𝑥𝑥2𝑃0

2𝑃1 −
243

8
𝑥5𝑃0

2𝑃1

−
243

16
𝑥6𝑃0

3𝑃1 −
27

8
𝑥4𝑃1

2 −
81

4
𝑥5𝑃0𝑃1

2 −

729

16
𝑡𝑥6𝑃0

2𝑃1
2 −

729

16
𝑥7𝑃0

3𝑃1
2 −

2187

128
𝑥8𝑃0

4𝑃1
2

+⋯ )

 
 
 
 

𝑡𝑃2
 

                 

and so on. One can has higher order 

approximations by going in a similar manner. To 

obtain the parameters, one has to compute 

residual.  For instance, with the values 𝑇 = 1,𝑎 =

0, 𝑏 = 1 in the Eq. (17) and performing the 

calculations 

  
𝜕𝐽

𝜕𝑃0
=

𝜕𝐽

𝜕𝑃1
=

𝜕𝐽

𝜕𝑃2
= ⋯ = 0                     (23) 

 

We will get 𝑃0 = 1.08365,𝑃1 = 0.90863 and 𝑃2 =

−0.100391. Substituting these constans into the 

corresponding approximate solutions, we have the 

third order OPIM solutions. Figure 3.1 and Figure 3.2 

give absolute residual errors (AREs) for 5th and 7th 

order approximate solutions. 

 

 

 

 

 

 

 

 

                          

Fig.3.1: AREs for fifth order OPIM solution. 
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Fig.3.2: AREs for seventh order OPIM solution. 

 

4. Discussion 

In this paper, we implement and benefit from the 

lately established OPIM for dealing with the system 

of particular PDEs. An application is solved in detail 

to prove the power of the OPIM.  Graphics are given 

to demonstrate the efficiency of optimal technique 

in higher-order approximations.  It is clear that many 

complex functions and integrations arise when 

constructing the OPIAs. Thus, we have benefited 

from Mathematica 9.0. to overcome these 

difficulties. As a conclusion we can say that the 

proposed scheme can be safely used as a solver of 

nonlinear PDEs. 
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