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ABSTRACT

In this paper,we give a possible construction for subgroups of semi-orthogonal groups gen-

erated by reflections in semi-Euclidean space.

OZET

Bu cahsmada semi-Oklidyen uzaydaki yansimalar ile iiretilen semi-ortogonal gruplann alt-

gruplart icin mimkiin yapiy1 verecegiz.

1. Introduction

Finite reflection groups on Euclidean space equipped with a positive definite
inner product are well developed and documented in a long series of papers
and books. The first comprehensive treatment of finite reflection groups was
given by H. S. M. Coxeter in 1934. In [ 3 ], he completely classified the groups
and derived several of their properties. Later, he included a discussion of the
groups in his book [ 4 ]. In 1941, E. Witt presented more algebraic approach
in {9 ]. Another has more recently appeared in N. Bourbaki’s chapters on Lie
groups and Lie algebras [ 1 ].

The main aim of this paper is to give a possible construction of reflection
groups on semi-Euclidean spaces. The basic definitions and background ma-
terial required here may be found in R. W. Carter [ 2 |, L. C. Grove and C.
T. Benson [ 5 ], J. E. Humphreys [ 6 ], B. O’Neill [ 7], D. E. Taylor [ 8 ].
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2. Reflection Groups on Semi-Euclidean Spaces

Let R be semi-Fuclidean space over the real field R equipped with a
sealar product < , > which is symmetric, non degenerate bilinear form:

v n
<T,Y>= Y T+ P Tibi
=1 f=p41
where z,y € R" and v is an integer with 0 < v < n.

Now let V' = R} and let the null cone of the scalar product be the set

A={zeV |<z,2>= 0}

For 0 < v < n, the signature matriz ¢ is the diagonal matrix ( d;;¢; ) whose
diagonal entries aree; = e3 = ...6, = —land e,y = €pp2 =...6, = +1. By
[7], we have < z,y > = (ex,y), where € is the corresponding transformation

to the signature matrix € and (, ) is a positive definite inner product on V.
The semi — orthogonal group on V with respect to < , > is
O,(n) = {8 € GL(n,R) | 5§ =57 ¢}
It is easy to show that O,(n) is isomorphic to
O,(V)={reGLV) |<ru, 10 >=< u,v > forallu,v €V}
Then, 7 € 0,(V) is called a semi — Euclidean reflection in V if 7 # 1y and

o = v for all v € H for sonie nondegenerate semi-Euclidean hyperplane H
inV.

The following lemma allows us to give a more explicit description of semi-

Euclidean reflections in V.

2.1. LeEMmMaA. Let H be a nondegenerate semi-Euclidean hyperplane in V.
and let w € V. — A. Then there exists a unique semi-Euclidean reflection
7 € 0,(V) such that

(i)t h = h forallhe H;

(i) 2 = ly;
(1i1) 7 is given by the formula
TV o= p o— 25—1}—’Huu, forallveV, ue H*

< w,u >
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Proof. Let u € V—-Aand H = < u >*. Let r be a semi-Euclidean

reflection which fixes the elements of H. By [8], V = H @ H, it fol-

lows that 72 = 1y. Ifv € V,let v = h+axn, , h € H, a € R, then

<w,u>=< h,u > +a < u,u >,thatis,a:§—5:—%—§,andso
< v, u >

TV = v — m

—_— U
< U, u >

From now on, this unique semi-Euclidean reflection 7 will be denoted by
7. Let a € R and v € V — A. We note that

(i) = —u
(ii) Tu = Taus
(i) det 7, = —1.

2.2. LEMMA. Letu € V ~ A and o € O, (V). Then ory0™! = 75,
Proof. Let v € V. Then

-1
-1 _ ~-1 <O V,u >
OTyO ¥ Ha(c v—2<_u’7u—ru)
-1
— <O "v.UuU>
=U - 27y, us T
Since o € 0,(V),wehave< cu,cu >=< u,u > But< o7lv, u >=

(€07 v, w ) and since o~1 = eatc we have

<o, u>=(dew,u) = (ev,0u) =< v, cu >

1

Then gr,07 ' = 7,40 ™

Now let G be a subgroup of 0,(V) generated by 7,, u € V ~ A. Then we
have the following definition.

2.3. DerINITION. Let # € V — A. The two unit vectors +u are called

semi — Euclidean roots of G associated with 7, € G.

2.4. Lemma. Let W be a semi-Euclidean hyperplane in V and let T € O, (V).
Then (TW): = TWL. fTW = W, then TWL = Wi,

Proof. If y € TW' | then there exists 2 € W+ such that y = Tz. So <

z,z>=0,forallz€ W. SinceT € O0,(V),wehave0 =< z, z >=< Tz, Tz >
forall z€ W. Then < y, Tz >=0,forall z € W, that is, y € (TW)".
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Conversely, y € (TW)*, then < y, ¢ > = 0forall z € TW. Then we

have
<y, Tu >=< Ty, u >= 0 forall uecW.

Since T € 0,(V'), we have

0 =< Ty, u >

=< I ey, u >

(T ey, u)
= (T7'ey, u)
(ey, (T7H'u)
<y, (T >
=< T, u>, forallueW.

Then 7'y € W, that is, y € TW, so (TW)L = TWt.

1l

If TW = W, then (TW)! = Wt and TWL = Wi,

Now, we can give the following lemma.
2.5. LeMMA. If & is a semi-Euclidean root of G and if T € G, then also Ta
is a semi-Euclidean root of G.

Proof. Set H = ot, H = TH and Ta = . Then H' is a semi-Euclidean
hyperplane and by the preceding lemma H' = (Ta): =2t Ify = Tz € H',
with z € H, then by Lemma 2.2. we have T7,7 'y = Troz = T2z = y.

Also T, T2 = Trya = — Ta = —z. Hence, Te is a semi-FEuclidean
root of G. [ ]
If Wy, ..., Wi are subspaces of V, then it can be easily seen that

(W + .+ W) =Witn..n Wt

2.6. LeMMA. Let G be a subgroup of O,(V) generated by semi-Euclidean
reflections along semi-Euclidean roots o, @y, ...,05. Then G is effective if
and only if {a1,,...,04} contains a basis for V.

&
Proof. Let W = ﬂ of. Since the semi-Euclidean reflection along o; acts
i=1
as the identity transformation on o and eack T € G is a product of the
generating semi-Euclidean reflections, we have T|w = 1w , for all T € §.

I WG = ﬂ Vr, where Vr is the subspace { 2 € V | Tz = 2 1.
TeG
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then W € V5(G). On the other hand, if z € V5(G), then in particular, each

generating semi-Euclidean reflection leaves z invariant, so z € o;%, for each

1 <i<k Thus 2 € Wand W = Vp(G). Consequently, G is effective if and
k

only if W =0 or Wt = V. But Wt = ([Jai*)* =3 7f att In other
=1

words, the set {ey , ..., ar} spans W+, since o

by ;. Then G is effective if and only if {a,az,...,a} spans V. "

L1 is the subspace spanned

2.7. DEFINITION. Let G be a subgroup of O,(V) generated by a finite set
of semi-Fuclidean reflections. Let ® be the set of all semi-Euclidean roots
corresponding to the generating semi-Fuclidean reflections, together with all
images of these semi-Euclidean roots under all transformations in §. The set

® is called a sem: — Fuclidean root system for G.

2.8. LEMMA. Let G be a subgroup of O, (V) generated by a finite set of semi-
Fuclidean reflections and let G be effective. If the semi-Euclidean root system
& is finite, then G is finite.

Proof. By the definition of semi-Euclidean root system we have T® = &,
for all T € §. Thus by restricting each T € § to ®, we may consider G as
a permutation group on ®. By the preceding lemma, since G is effective @
contains a basis for V; so if T'|® is the identity map on @ then T = 1g, that
is, G is faithful on ®, so G is finite if ® is finite. n

2.9. DEFINITION. A finite effective subgroup G of O,(V) generated by a set
of semi-Euclidean reflections is called a semé — Fuelidean reflection group.

From now on, we assume that ¢ is a semi-Euclidean reflection group, with

semi-FEuclidean root system .

It can be easily seen that thereis a vectort € V—Asuchthat < ¢, o ># 0
for every root o of G. Then the root system ® is partitioned into two subsets;

&t = {zeV|<z,t>>0}and®” = {zeV]|<z,t><0}

Geometrically, ®,* and ®; are the subsets of ® lying on the two sides of the
hyperplane t+. f o € &, then —a € Pand < t, —a >= - < ¢, a >.
Thus @ € &, if and only if —2 € &, and so | &t | = [ &, |.

2.10. DEFINITION. Let 7 be a minimal subset of ®,% such that every o € &,

is a linear combination, with all coefficients non-negative, of elements of .



Baki Karha 103

Then = is called a ¢ — base for ®.

2.11. DEFINITION. Let w = { @1 , ...,y } be a fixed t-base for ®. A vector
z € V is called ¢ — positive if it is possible to write z as a linear combination
of oy , ... ,am with all coefficients non-negative. Similarly, z € V is called

t — negative if it is a nonpositive linear combination of &y , ... , .

From now on, we shall say positive rather than t-positive and negative

rather than t-negative,

2.12. LEMMA. Leta; , o € 1, withi # j and Ay, A; are positive real numbers,
then the vector & = Aoy — Ajoy is neither positive nor negative,

Proof. Suppose that a is positive. Then we have

m
o= Moy — Aja; = Zﬂkoﬁc , with all pp >0
k=1
If A; < py, then

0= (pi = Aai + (i + Ajdeay + 3 {mear = k#i, j)
But
0=< 1, (m—A)oi + (ui+A) a5+ > {mear : k#4i, j} >
andso 0 > A; < «; ,t > > 0. This is a contradiction. If A; > p;, then
(N — )i = (A + pgdey + Y {mwas - k#4, 5}

Since A; — p; # 0, we may divide by A; — u; and express a; as a non-negative
linear combination of the elements of x \ {a;}, contradicting the minimality
of r. Thus « is not positive. On the other hand, if & were negative, then —a
would be positive, which is impossible by the above argument with i and j

interchanged. ™

2.13. LeMmMma. Let o; , a; € 7 ,with i # jand let 7; denote the semi-
FEuclidean reflection along o, If a; is timelike (spacelike) and < oy , o > >
0 (< @, e ><0), then u(a;) € ;T

Proof. By Lemma 2.5 7;(a;) € @, we know that r;{(a;) € ® is either positive

or negative. Dut
< a;p, o >
i(ey) = oy ~ 2——2—L " ¢
< oy, 0y >

|
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with one coefficient positive. If a; is timelike (spacelike), by the preceding
lemma, both coefficients must be non-negative,so < o, a; > 2 0 (< ai,a; ><0)
and 7i(0;) € ;1.

9.14. LEMMA. 03 5 o, Om €V ~A. Let U = Spler, .., &} bea
subspace of V. such that the scalar product is negative definite on U and let
W = Sp{ov4r, -, @m} be a subspace of V such that the scalar product is
positive definite on W. Suppose that < a , a; >> 0.1 <1< m, for some
ac V. If
< Qi , Qj >2 0, 1S£7]§V77'5é]

< o, 05 > < 0,v+1<i,j<m,i#j

< o, >=0, 1<i<v,v+1<j<m
then {ay , ..., G} is a linearly independent set.
Proof. Suppose that {a; , ..., @m} is a linearly dependent set. Then there is

a dependence relation of the form
k m
Z/\gai = Z piej , with all \; 20, all p; > 0 and some A; > 0
i=1 j=k+1
This will proceed in two steps.

(1) Let 1 < k < v. Then we have

k v m
S hai= Y pjos+ 3T owaj, 20, p4 20

i=1 j=k+1 j=pt1
Since the scalar product is negative definite on U,
k k k v k m
0>< }:)‘fai’ ZAN:' >= z z Aipy < g, o5 > +Z Z Aipty < @i, aj >
i=1 i=1 i=1 j=k41 i=1j=p+1
Since < @;, a; >=0,1<i<vy, v+1<j<m,then
k k k v
0>« Z/\ia,‘, ZAiQi >:Z Z Aipj < o, a5 >
=l i=1 =1 j=k+1
Since < o; , a; >>0,1<1, j<v, i#j, wehave

k k
0>< Z)\iai , Z/\;ai >>0

i=1 i=1
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and so

k k
< ZA@Q{,Z)\;{Q;‘ >= 0
7=1 i=1

k
Then 3 Moy = 0. By our assumption < a; , & >> 0, 1<i<m,for
i=1
some @ € V and so
k

0=3 A< ai,a >>0

1=1
This is a contradiction.

(2) Let v+ 1 < k < m. Then we have

u k m
SThioi+ Y Moy = > M, A= 0, 4 >0
i=1

i=v41 J=k+1
and so
v k m
SThai= D (A 3 o, Ai20, 420
i=1 J=u+l j=k+1
Since the scalar product is negative definite on U and positive definite on W,
v v k m k m
02< S hag, Yo her>=< 3 (=A)ay Y iy, Y (SA)ag D pjey >0
1=l =1 J=t+1 F=k+1 j=v+1 i=k+1
and so
v v
< ZA,‘C{;’ s Zz\iai >=10
i=1 i=1
and
k m k ™m
< S (Aey Y miay, Y (Aag Y pieg > =0 (21)
J=ut+l Je=k+1 F=v+1 F=k+1

If 1 < €< v <k,since the scalar product is negative definite on U, we have

v
Y hiei=0,1<L<v <k, A >0
i=1
and
v
O:ZM< ai,a >> 0

=1
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This is a contradiction. By (2.1) and since the scalar product is positive

definite on W we have

k m
Z(—Aj)aj-lv-ZyjajZO,V+1§ESk,A(>O
j=vtl j=k41
or
k m
Y Aoy = Y mjay, v+ 1<L<k, A > 0
Jj=v+1 J=k+1
Hence by our assumption < a; , ¢; >< 0 and the scalar product is positive

definite on W, we have

k k k m
0<< Y Ao, 3 iy >= > Z A < o, o >0
i=v+1 j=udl 1=+l j=k41

and so
k
z Na; =0
i=r41
and by our assumption < @, a; > > 0 and so

k
0=< Z Jilag, a > > 0
t=p41
This is a contradiction, so {@; , ..., &z} Is a linearly independent set. ]

2.15. THEOREM. If 7 is a t-base for ®;, then 7 is a basis for V.

Proof. Since G is effective, by Lemma 2.6 ®; spans V. Since every a € ®; is
a linear combination of roots in #, V is spanned by #. By Lemma 2.13 and
Lemma 2.14, 7 is linearly independent, so 7 is a basis for V. ]

2.16. LEMMA. There is only one t-base for @;.
Proof. Tt follows from Proposition 4.1.8[5]. =

In order to illustrate the concepts discussed so far, we give the following

example:

2.17. ExaMmpLE. The seven reflections in R} generate HS + A;, where H§
is the dihedral group of order 12 and Ay is a cyclic group of order 2. The root

system

1 3 1.3
$ = { i(27 17 0)7i(1127 0)’:':(_17 “27 1)7 i(1,2, 1),:|:(0,0,2),:f:(—§, _L 5)7 i('z's 1v 5)}
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Choosing ¢ = (—1,1,6), we have
+ 1 3.1 3
o = (2,1,0),(1,2,0),(~1,—2,1),(1,2,1),(0,0,2),(—5,_1,5),(5,1,5)}
™= { (Qa110)7(17270):(_17—‘271)}

2.18. LEMMA. Let 7; be the semi-Euclidean reflection along o; € ©# = {1y, ..., a0},
Ifae ‘I>t+, with a # «;, then T € ‘I>'t+.

i
Proof. f @ € m, by Lemma 2,13 ;0 € &F. fa ¢ 7, then a = 5 Ajo; and
i=1

at least two of the coefficients A; are positive; so we can assume that e; # o
and that A; > 0. Thus

e = 3 Amiay)
i=1

=Mar+ 2 Aoy —2( Z;‘L:I Aj < o0 > )y
=2

Since ;o € @, T is either positive or negative. But it has at least one
positive coefficient A;, we conclude that all coefficients are non-negative and

so that ;o € &+, ]

2.19. DEFINITION. The semi-FEuclidean roots a, ..., o, in the base 7 are called
simple semi — Euclidean roots. The semi-Euclidean reflections 7, 79,..., 7
along the simple semi-Fuclidean roots are called simple semi— Euclidean're flections
of G.

We dencte by G; the subgroup < 7z : 1 <7< n>of G It will be
shown (Theorem 2.22) that G; = G, that is, G is generated by its simple

semi-Euclidean reflections.

2.20. LEMMA.Ifa € V, there is a transformation T € G, such that < Ta , a; >>
0 for all o; € 7.

Proof. Let ap = 4 Y a. Since §; is a finite group, it is possible to choose
a€dt

T € G; such that < Ta , ap > is maximal. If 7; is the semi-Euclidean

reflection along «;, then by the preceding lemma we have:
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Ti0g :Ti(%ﬂli+%z{a6¢+ o # al)
—%OAH-%Z{&G@JF D a#a)
%Z{a €0t} — oy
=ag — @y

il

it

By the maximality of < Te, ag > wehave < Ta, oy >>< rTa, ag >.
On the other hand
< rTa,as > =(erTe, ag)
= (T, e0p )
=(Ta, rileap )
=(Ta, ericeag )
={Ta,eriap )
=(Te, riag )
=< TOt, Ti0g >

Then we have

<Tea,o>><Ta, nag >=< Ta, ag~a; >=<Ta,a> — <Ta, a; >

2.21. LEMMA.If o € ®T, then Ta € © for some T € Gy,

Proof. f & € m, we can choose T' = 1g,. If o & 7, then it follows Lemma 2.13,
Lemma 2.14 and Theorem 2.15that < o, , @ > < 0or< o, , a > > 0
for some semi-Fuclidean root a;, € ; otherwise, 7 U {a} would be linearly
. < O, & >

independent. Let a; = myo0 = o = 2 Z——C%:L,T;ail. By Lemma 2.18
a; € &, and

<ap,t >=< a,t >—-2

fayer,setT =1, €G,. Ifa; ¢ n,apply the above process to a;, obtaining
ai, €m,and az = Ti(a) = T €8T <ar, t > < < ar,t > If
ag € w,set T = m, 7y, € Gy if ag & m, the process is continued. Since ®7 is
finite, the process must terminate with some a; € 7. Then a) = 7,...7;; o and

if weset T =7;,..1, € Gy, then lemma is proved. u

2.22. THEOREM.The simple semi-Euclidean reflections 11,7e,...,T, generate
G, that is, G, = G.

Proof. Since § =< 1, : o € & > and since 7., = 71, it will hee sufficient
to prove that if o € 8+, then 7, € G:. Let @ € ®*. By the preceding lemma
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there is a transformation T' € G, such that T € 1, say Ta = a;. By Lemma
2.2 we have 1, = T™'1,T € G;. n

We note that a reflection 7 is a semi-Euclidean reflection if and only if

T¢ = €7, that is, a reflection is not a semi-Euclidean reflection in general.
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