PAPER DETAILS

TITLE: REFLECTION GROUPS ON SEMI-EUCLIDEAN SPACES

AUTHORS: Baki KARLIGA

PAGES: 98-109

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/252502

REFLECTION GROUPS ON SEMI-EUCLIDEAN SPACES

Baki KARLIĞA

Department of Mathematics, Arts and Sciences Faculty, Gazi University 06500 Ankara, TURKEY.

ABSTRACT

In this paper, we give a possible construction for subgroups of semi-orthogonal groups generated by reflections in semi-Euclidean space.

ÖZET

Bu çalışmada semi-Öklidyen uzaydaki yansımalar ile üretilen semi-ortogonal grupların altgrupları için mümkün yapıyı vereceğiz.

1. Introduction

Finite reflection groups on Euclidean space equipped with a positive definite inner product are well developed and documented in a long series of papers and books. The first comprehensive treatment of finite reflection groups was given by H. S. M. Coxeter in 1934. In [3], he completely classified the groups and derived several of their properties. Later, he included a discussion of the groups in his book [4]. In 1941, E. Witt presented more algebraic approach in [9]. Another has more recently appeared in N. Bourbaki's chapters on Lie groups and Lie algebras [1].

The main aim of this paper is to give a possible construction of reflection groups on semi-Euclidean spaces. The basic definitions and background material required here may be found in R. W. Carter [2], L. C. Grove and C. T. Benson [5], J. E. Humphreys [6], B. O'Neill [7], D. E. Taylor [8].

2. Reflection Groups on Semi-Euclidean Spaces

Let \mathbf{R}^n_{ν} be semi-Euclidean space over the real field \mathbf{R} equipped with a scalar product <, > which is symmetric, non degenerate bilinear form;

$$\langle x, y \rangle = -\sum_{i=1}^{\nu} x_i y_i + \sum_{i=\nu+1}^{n} x_i y_i$$

where $x, y \in \mathbf{R}^n$ and ν is an integer with $0 \le \nu \le n$.

Now let $V = \mathbf{R}^n_{\nu}$ and let the null cone of the scalar product be the set

$$\Lambda = \{ x \in V \mid \langle x, x \rangle = 0 \}$$

For $0 \le \nu \le n$, the signature matrix ε is the diagonal matrix ($\delta_{ij}\varepsilon_j$) whose diagonal entries are $\varepsilon_1 = \varepsilon_2 = \dots \varepsilon_{\nu} = -1$ and $\varepsilon_{\nu+1} = \varepsilon_{\nu+2} = \dots \varepsilon_n = +1$. By [7], we have $\langle x, y \rangle = (\epsilon x, y)$, where ϵ is the corresponding transformation to the signature matrix ε and (,) is a positive definite inner product on V.

The $semi-orthogonal\ group$ on V with respect to $<\ ,\ >$ is

$$O_{\nu}(n) = \{ S \in GL(n, \mathbf{R}) \mid S^t = \varepsilon S^{-1} \varepsilon \}$$

It is easy to show that $O_{\nu}(n)$ is isomorphic to

$$O_{\nu}(V) = \{ \tau \in GL(V) \mid \langle \tau u, \tau v \rangle = \langle u, v \rangle \text{ for all } u, v \in V \}$$

Then, $\tau \in O_{\nu}(V)$ is called a semi – Euclidean reflection in V if $\tau \neq 1_V$ and $\tau v = v$ for all $v \in H$ for some nondegenerate semi-Euclidean hyperplane H in V.

The following lemma allows us to give a more explicit description of semi-Euclidean reflections in V.

- 2.1. Lemma. Let H be a nondegenerate semi-Euclidean hyperplane in V and let $u \in V$ Λ . Then there exists a unique semi-Euclidean reflection $\tau \in O_{\nu}(V)$ such that
- (i) $\tau h = h \text{ for all } h \in H;$
- (ii) $\tau^2 = 1_V$;
- (iii) τ is given by the formula

$$\tau v \ = \ v \ - \ 2 \frac{< \ v \ , \ u \ >}{< \ u \ , \ u \ >} \ u \ , \ for \ all \ v \in V, \ u \in H^{\perp}$$

Proof. Let $u \in V - \Lambda$ and $H = \langle u \rangle^{\perp}$. Let τ be a semi-Euclidean reflection which fixes the elements of H. By [8], $V = H^{\perp} \oplus H$, it follows that $\tau^2 = 1_V$. If $v \in V$, let v = h + a.u, , $h \in H$, $a \in \mathbf{R}$, then $\langle v, u \rangle = \langle h, u \rangle + a \langle u, u \rangle$, that is, $a = \langle v, u \rangle = \langle v, u \rangle$, and so

$$\tau v = v - 2 \frac{\langle v, u \rangle}{\langle u, u \rangle} u$$

From now on, this unique semi-Euclidean reflection τ will be denoted by τ_u . Let $a \in \mathbf{R}$ and $u \in V - \Lambda$. We note that

- (i) $\tau_u u = -u$;
- (ii) $\tau_u = \tau_{au}$;
- (iii) $\det \tau_u = -1$.
- 2.2. Lemma. Let $u \in V \Lambda$ and $\sigma \in O_{\nu}(V)$. Then $\sigma \tau_u \sigma^{-1} = \tau_{\sigma u}$.

Proof. Let $v \in V$. Then

$$\begin{array}{ll} \sigma \tau_u \sigma^{-1} \ v &= \sigma \left(\sigma^{-1} \ v \ -2 \ \frac{<\sigma^{-1} v \ , \ u >}{< u \ , \ u >} \ u \right) \\ &= v \ -2 \ \frac{<\sigma^{-1} v \ . \ u >}{< u \ , \ u >} \ \sigma \ u \end{array}$$

Since $\sigma \in O_{\nu}(V)$, we have $< \sigma u$, $\sigma u > = < u$, u >. But $< \sigma^{-1}v$, $u > = (\epsilon \sigma^{-1}v, u)$ and since $\sigma^{-1} = \epsilon \sigma^t \epsilon$ we have

$$< \sigma^{-1}v , u > = (\sigma^t \epsilon v , u) = (\epsilon v , \sigma u) = < v , \sigma u >$$

Then
$$\sigma \tau_u \sigma^{-1} v = \tau_{\sigma u} v$$

Now let \mathcal{G} be a subgroup of $O_{\nu}(V)$ generated by τ_u , $u \in V - \Lambda$. Then we have the following definition.

- 2.3. Definition. Let $u \in V \Lambda$. The two unit vectors $\pm u$ are called $semi Euclidean\ roots$ of $\mathcal G$ associated with $\tau_u \in \mathcal G$.
- 2.4. Lemma. Let W be a semi-Euclidean hyperplane in V and let $T \in O_{\nu}(V)$. Then $(TW)^{\perp} = TW^{\perp}$. If TW = W, then $TW^{\perp} = W^{\perp}$.

Proof. If $y \in TW^{\perp}$, then there exists $x \in W^{\perp}$ such that y = Tx. So < x, z >= 0, for all $z \in W$. Since $T \in O_{\nu}(V)$, we have 0 =< x, z >=< Tx, Tz > for all $z \in W$. Then < y, Tz >= 0, for all $z \in W$, that is, $y \in (TW)^{\perp}$.

Conversely, $y \in (TW)^{\perp},$ then < y , x > = 0 for all $x \in TW.$ Then we have

$$\langle y, Tu \rangle = \langle T^t y, u \rangle = 0 \text{ for all } u \in W.$$

Since $T \in O_{\nu}(V)$, we have

$$\begin{array}{lll} 0 & = & < T^t y \;,\; u \;> \\ & = & < \epsilon T^{-1} \epsilon y \;,\; u \;> \\ & = & (\; \epsilon \epsilon T^{-1} \epsilon y \;,\; u \;) \\ & = & (\; T^{-1} \epsilon y \;,\; u \;) \\ & = & (\; \epsilon y \;,\; (T^{-1})^t u \;) \\ & = & < y \;,\; (T^{-1})^t u \;> \\ & = & < T^{-1} y \;,\; u \;> \;,\; for\; all\; u \in W. \end{array}$$

Then $T^{-1}y \in W^{\perp}$, that is, $y \in TW^{\perp}$, so $(TW)^{\perp} = TW^{\perp}$.

If
$$TW = W$$
, then $(TW)^{\perp} = W^{\perp}$ and $TW^{\perp} = W^{\perp}$.

Now, we can give the following lemma.

2.5. LEMMA. If α is a semi-Euclidean root of $\mathcal G$ and if $T\in \mathcal G$, then also $T\alpha$ is a semi-Euclidean root of $\mathcal G$.

Proof. Set $H=\alpha^{\perp}$, H'=TH and $T\alpha=x$. Then H' is a semi-Euclidean hyperplane and by the preceding lemma $H'=(T\alpha)^{\perp}=x^{\perp}$. If $y=Tz\in H'$, with $z\in H$, then by Lemma 2.2. we have $T\tau_{\alpha}T^{-1}y=T\tau_{\alpha}z=Tz=y$. Also $T\tau_{\alpha}T^{-1}x=T\tau_{\alpha}\alpha=-T\alpha=-x$. Hence, $T\alpha$ is a semi-Euclidean root of G.

If W_1 , ..., W_k are subspaces of V, then it can be easily seen that $(W_1+\ldots+W_k)^\perp=W_1^\perp\cap\ldots\cap W_k^\perp.$

2.6. Lemma. Let $\mathcal G$ be a subgroup of $O_{\nu}(V)$ generated by semi-Euclidean reflections along semi-Euclidean roots $\alpha_1,\alpha_2,\ldots,\alpha_k$. Then $\mathcal G$ is effective if and only if $\{\alpha_1,\alpha_2,\ldots,\alpha_k\}$ contains a basis for V.

Proof. Let $W=\bigcap_{i=1}^k \alpha_i^\perp$. Since the semi-Euclidean reflection along α_i acts as the identity transformation on α_i^\perp and each $T\in \mathcal{G}$ is a product of the generating semi-Euclidean reflections, we have $T|_W=1_W$, for all $T\in \mathcal{G}$. If $V_0(\mathcal{G})=\bigcap_{T\in \mathcal{G}}V_T$, where V_T is the subspace $\{\ x\in V\ |\ Tx=x\ \}$,

then $W \subseteq V_0(\mathcal{G})$. On the other hand, if $x \in V_0(\mathcal{G})$, then in particular, each generating semi-Euclidean reflection leaves x invariant, so $x \in \alpha_i^{\perp}$, for each $1 \leq i \leq k$. Thus $x \in W$ and $W = V_0(\mathcal{G})$. Consequently, \mathcal{G} is effective if and only if W = 0 or $W^{\perp} = V$. But $W^{\perp} = (\bigcap_{i=1}^k \alpha_i^{\perp})^{\perp} = \sum_{i=1}^k \tau_{i=1}^k \alpha_i^{\perp}$. In other words, the set $\{\alpha_1, \ldots, \alpha_k\}$ spans W^{\perp} , since α_i^{\perp} is the subspace spanned by α_i . Then \mathcal{G} is effective if and only if $\{\alpha_1, \alpha_2, \ldots, \alpha_k\}$ spans V.

- 2.7. Definition. Let $\mathcal G$ be a subgroup of $O_{\nu}(V)$ generated by a finite set of semi-Euclidean reflections. Let Φ be the set of all semi-Euclidean roots corresponding to the generating semi-Euclidean reflections, together with all images of these semi-Euclidean roots under all transformations in $\mathcal G$. The set Φ is called a semi Euclidean root system for $\mathcal G$.
- 2.8. Lemma. Let $\mathcal G$ be a subgroup of $O_{\nu}(V)$ generated by a finite set of semi-Euclidean reflections and let $\mathcal G$ be effective. If the semi-Euclidean root system Φ is finite, then $\mathcal G$ is finite.

Proof. By the definition of semi-Euclidean root system we have $T\Phi = \Phi$, for all $T \in \mathcal{G}$. Thus by restricting each $T \in \mathcal{G}$ to Φ , we may consider \mathcal{G} as a permutation group on Φ . By the preceding lemma, since \mathcal{G} is effective Φ contains a basis for V; so if $T|\Phi$ is the identity map on Φ then $T = 1_{\mathcal{G}}$, that is, \mathcal{G} is faithful on Φ , so \mathcal{G} is finite if Φ is finite.

2.9. Definition. A finite effective subgroup \mathcal{G} of $O_{\nu}(V)$ generated by a set of semi-Euclidean reflection is called a semi-Euclidean reflection group.

From now on, we assume that \mathcal{G} is a semi-Euclidean reflection group, with semi-Euclidean root system Φ .

It can be easily seen that there is a vector $t \in V - \Lambda$ such that $\langle t, \alpha \rangle \neq 0$ for every root α of \mathcal{G} . Then the root system Φ is partitioned into two subsets;

$$\Phi_t^+ = \{ x \in V \mid < x, t >> 0 \} \text{ and } \Phi_t^- = \{ x \in V \mid < x, t >< 0 \}$$

Geometrically, Φ_t^+ and Φ_t^- are the subsets of Φ lying on the two sides of the hyperplane t^\perp . If $\alpha \in \Phi$, then $-\alpha \in \Phi$ and < t, $-\alpha > = - < t$, $\alpha >$. Thus $\alpha \in \Phi_t^+$ if and only if $-\alpha \in \Phi_t^-$ and so $|\Phi_t^+| = |\Phi_t^-|$.

2.10. DEFINITION. Let π be a minimal subset of Φ_t^+ such that every $\alpha \in \Phi_t^+$ is a linear combination, with all coefficients non-negative, of elements of π .

Baki Karlığa

103

Then π is called a t-base for Φ .

2.11. DEFINITION. Let $\pi = \{ \alpha_1, \ldots, \alpha_m \}$ be a fixed t-base for Φ . A vector $x \in V$ is called t-positive if it is possible to write x as a linear combination of α_1 , ..., α_m with all coefficients non-negative. Similarly, $x \in V$ is called t-negative if it is a nonpositive linear combination of α_1 , ..., α_m .

From now on, we shall say positive rather than t-positive and negative rather than t-negative.

2.12. Lemma. Let α_i , $\alpha_j \in \pi$, with $i \neq j$ and λ_i , λ_j are positive real numbers, then the vector $\alpha = \lambda_i \alpha_i - \lambda_j \alpha_j$ is neither positive nor negative.

Proof. Suppose that α is positive. Then we have

$$\alpha = \lambda_i \alpha_i - \lambda_j \alpha_j = \sum_{k=1}^m \mu_k \alpha_k$$
, with all $\mu_k \ge 0$

If $\lambda_i < \mu_i$, then

$$0 = (\mu_i - \lambda_i)\alpha_i + (\mu_j + \lambda_j)\alpha_j + \sum \{\mu_k \alpha_k : k \neq i, j\}$$

But

$$0 = \langle t, (\mu_i - \lambda_i) \alpha_i + (\mu_j + \lambda_j) \alpha_j + \sum \{\mu_k \alpha_k : k \neq i, j\} \rangle$$

and so $0 \ge \lambda_i < \alpha_i$, t >> 0. This is a contradiction. If $\lambda_i > \mu_i$, then

$$(\lambda_i - \mu_i)\alpha_i = (\lambda_j + \mu_j)\alpha_j + \sum \{\mu_k \alpha_k : k \neq i, j\}$$

Since $\lambda_i - \mu_i \neq 0$, we may divide by $\lambda_i - \mu_i$ and express α_i as a non-negative linear combination of the elements of $\pi \setminus \{\alpha_i\}$, contradicting the minimality of π . Thus α is not positive. On the other hand, if α were negative, then $-\alpha$ would be positive, which is impossible by the above argument with i and j interchanged.

2.13. Lemma. Let α_i , $\alpha_j \in \pi$, with $i \neq j$ and let τ_i denote the semi-Euclidean reflection along α_i . If α_i is timelike (spacelike) and $< \alpha_i$, $\alpha_j > \geq 0$ ($< \alpha_i$, $\alpha_j > \leq 0$), then $\tau_i(\alpha_j) \in \Phi_t^+$.

Proof. By Lemma 2.5 $\tau_i(\alpha_j) \in \Phi$, we know that $\tau_i(\alpha_j) \in \Phi$ is either positive or negative. But

$$\tau_i(\alpha_j) = \alpha_j - 2 \frac{\langle \alpha_i, \alpha_j \rangle}{\langle \alpha_i, \alpha_i \rangle} \alpha_i$$

with one coefficient positive. If α_i is timelike (spacelike), by the preceding lemma, both coefficients must be non-negative, so $< \alpha_i$, $\alpha_j > \ge 0$ ($< \alpha_i$, $\alpha_j > \le 0$) and $\tau_i(\alpha_j) \in \Phi_t^+$.

2.14. Lemma. α_1 , ..., $\alpha_m \in V - \Lambda$. Let $U = Sp\{\alpha_1, \ldots, \alpha_\nu\}$ be a subspace of V such that the scalar product is negative definite on U and let $W = Sp\{\alpha_{\nu+1}, \ldots, \alpha_m\}$ be a subspace of V such that the scalar product is positive definite on W. Suppose that $<\alpha$, $\alpha_i >> 0$. $1 \le i \le m$, for some $\alpha \in V$. If

$$< \alpha_i , \alpha_j > \ge 0 , 1 \le i , j \le \nu , i \ne j$$

$$< \alpha_i , \alpha_j > \le 0 , \nu + 1 \le i , j \le m , i \ne j$$

$$< \alpha_i , \alpha_j > = 0 , 1 \le i \le \nu , \nu + 1 \le j \le m$$

then $\{\alpha_1, \ldots, \alpha_m\}$ is a linearly independent set.

Proof. Suppose that $\{\alpha_1, \ldots, \alpha_m\}$ is a linearly dependent set. Then there is a dependence relation of the form

$$\sum_{i=1}^k \lambda_i \alpha_i = \sum_{j=k+1}^m \mu_j \alpha_j \ , \ \text{with all} \ \lambda_i \geq 0 \ , \ \text{all} \ \mu_j \geq 0 \ \text{and some} \ \lambda_i > 0$$

This will proceed in two steps.

(1) Let $1 \le k \le \nu$. Then we have

$$\sum_{i=1}^k \lambda_i \alpha_i = \sum_{j=k+1}^\nu \mu_j \alpha_j + \sum_{j=\nu+1}^m \mu_j \alpha_j \ , \ \lambda_i \geq 0 \ , \ \mu_j \geq 0$$

Since the scalar product is negative definite on U,

$$0 \geq < \sum_{i=1}^k \lambda_i \alpha_i \; , \; \sum_{i=1}^k \lambda_i \alpha_i \; > = \sum_{i=1}^k \sum_{j=k+1}^\nu \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_j \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_j \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_j \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_j \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_j \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_j \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_j \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_j \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_j \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_i \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_i \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_i \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_i \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_i \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_i \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_i \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_i \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_i \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_i \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_i \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_i \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_i \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_i \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_i \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_i \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_i \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_i \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_i \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_i \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_i \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_i \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_i \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_i \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \mu_j < \; \alpha_i \; , \; \alpha_i \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \; , \; \alpha_i \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \; , \; \alpha_i \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \; , \; \alpha_i \; > + \sum_{i=1}^k \sum_{j=\nu+1}^m \lambda_i \;$$

Since < α_i , α_j >=0 , $1 \le i \le \nu$, $\nu+1 \le j \le m$, then

$$0 \geq < \sum_{i=1}^{k} \lambda_i \alpha_i , \sum_{i=1}^{k} \lambda_i \alpha_i > = \sum_{i=1}^{k} \sum_{j=k+1}^{\nu} \lambda_i \mu_j < \alpha_i , \alpha_j >$$

Since $<\alpha_i$, α_j $> \ge 0$, $1 \le i$, $j \le \nu$, $i \ne j$, we have

$$0 \geq < \sum_{i=1}^{k} \lambda_i \alpha_i , \sum_{i=1}^{k} \lambda_i \alpha_i > \geq 0$$

and so

$$<\sum_{i=1}^k \lambda_i \alpha_i , \sum_{i=1}^k \lambda_i \alpha_i > = 0$$

Then $\sum\limits_{i=1}^k\lambda_i\alpha_i=0.$ By our assumption $<\alpha_i$, $\alpha>>0$, $1\leq i\leq m,$ for some $\alpha\in V$ and so

$$0 = \sum_{i=1}^k \lambda_i < \alpha_i , \alpha >> 0$$

This is a contradiction.

(2) Let $\nu + 1 \le k \le m$. Then we have

$$\sum_{i=1}^{\nu} \lambda_i \alpha_i + \sum_{i=\nu+1}^{k} \lambda_i \alpha_i = \sum_{j=k+1}^{m} \mu_j \alpha_j \ , \ \lambda_i \geq 0 \ , \ \mu_j \geq 0$$

and so

$$\sum_{i=1}^{\nu} \lambda_i \alpha_i = \sum_{j=\nu+1}^k (-\lambda_j) \alpha_j \sum_{j=k+1}^m \mu_j \alpha_j \ , \ \lambda_i \geq 0 \ , \ \mu_j \geq 0$$

Since the scalar product is negative definite on U and positive definite on W.

$$0 \ge < \sum_{i=1}^{\nu} \lambda_i \alpha_i , \sum_{i=1}^{\nu} \lambda_i \alpha_i > = < \sum_{j=\nu+1}^{k} (-\lambda_j) \alpha_j \sum_{j=k+1}^{m} \mu_j \alpha_j , \sum_{j=\nu+1}^{k} (-\lambda_j) \alpha_j \sum_{j=k+1}^{m} \mu_j \alpha_j > \ge 0$$

and so

$$<\sum_{i=1}^{\nu} \lambda_i \alpha_i , \sum_{i=1}^{\nu} \lambda_i \alpha_i > = 0$$

and

$$< \sum_{j=\nu+1}^{k} (-\lambda_j) \alpha_j \sum_{j=k+1}^{m} \mu_j \alpha_j , \sum_{j=\nu+1}^{k} (-\lambda_j) \alpha_j \sum_{j=k+1}^{m} \mu_j \alpha_j > = 0$$
 (2.1)

If $1 \le \ell \le \nu \le k$, since the scalar product is negative definite on U, we have

$$\sum_{i=1}^{\nu} \lambda_i \alpha_i = 0 , 1 \le \ell \le \nu \le k , \lambda_{\ell} > 0$$

and

$$0 = \sum_{i=1}^{\nu} \lambda_i < \alpha_i , \alpha >> 0$$

This is a contradiction. By (2.1) and since the scalar product is positive definite on W we have

$$\sum_{j=\nu+1}^{k} (-\lambda_j) \alpha_j + \sum_{j=k+1}^{m} \mu_j \alpha_j = 0 , \nu + 1 \le \ell \le k , \lambda_{\ell} > 0$$

or

$$\sum_{j=\nu+1}^{k} (\lambda_j) \alpha_j \; = \; \sum_{j=k+1}^{m} \mu_j \alpha_j, \; \nu+1 \leq \ell \leq k \; , \; \lambda_\ell \; > \; 0$$

Hence by our assumption $< \alpha_i$, $\alpha_j > \le 0$ and the scalar product is positive definite on W, we have

$$0 \leq < \sum_{i=\nu+1}^k \lambda_i \alpha_i \ , \ \sum_{i=\nu+1}^k \lambda_i \alpha_i \ > = \sum_{i=\nu+1}^k \sum_{j=k+1}^m \lambda_i \mu_j < \ \alpha_i \ , \ \alpha_j \ > \leq 0$$

and so

$$\sum_{i=\nu+1}^k \lambda_i \alpha_i = 0$$

and by our assumption $< \alpha \ , \ \alpha_i \ >> \ 0$ and so

$$0 = < \sum_{i=\nu+1}^{k} \lambda_i \langle \alpha_i , \alpha \rangle > 0$$

This is a contradiction, so $\{\alpha_1, \ldots, \alpha_m\}$ is a linearly independent set.

2.15. THEOREM. If π is a t-base for Φ_t , then π is a basis for V.

Proof. Since $\mathcal G$ is effective, by Lemma 2.6 Φ_t spans V. Since every $\alpha \in \Phi_t$ is a linear combination of roots in π , V is spanned by π . By Lemma 2.13 and Lemma 2.14, π is linearly independent, so π is a basis for V.

2.16. Lemma. There is only one t-base for Φ_t .

Proof. It follows from Proposition 4.1.8 [5].

In order to illustrate the concepts discussed so far, we give the following example:

2.17. Example. The seven reflections in \mathbf{R}_1^3 generate $\mathcal{H}_2^6 + \mathcal{A}_1$, where \mathcal{H}_2^6 is the dihedral group of order 12 and \mathcal{A}_1 is a cyclic group of order 2. The root system

$$\Phi = \{ \pm(2,1,0), \pm(1,2,0), \pm(-1,-2,1), \pm(1,2,1), \pm(0,0,2), \pm(-\frac{1}{2},-1,\frac{3}{2}), \pm(\frac{1}{2},1,\frac{3}{2}) \}$$

Choosing t = (-1, 1, 6), we have

$$\begin{split} \Phi_t^+ &= \{\ (2,1,0), (1,2,0), (-1,-2,1), (1,2,1), (0,0,2), (-\frac{1}{2},-1,\frac{3}{2}), (\frac{1}{2},1,\frac{3}{2})\ \} \\ \pi &= \{\ (2,1,0), (1,2,0), (-1,-2,1)\ \} \end{split}$$

2.18. Lemma. Let τ_i be the semi-Euclidean reflection along $\alpha_i \in \pi = \{\alpha_1, ..., \alpha_n\}$. If $\alpha \in \Phi_t^+$, with $\alpha \neq \alpha_i$, then $\tau_i \alpha \in \Phi_t^+$.

Proof. If $\alpha \in \pi$, by Lemma 2.13 $\tau_i \alpha \in \Phi_t^+$. If $\alpha \notin \pi$, then $\alpha = \sum\limits_{j=1}^n \lambda_j \alpha_j$ and at least two of the coefficients λ_j are positive; so we can assume that $\alpha_i \neq \alpha_1$ and that $\lambda_1 > 0$. Thus

$$\tau_{i}\alpha = \sum_{j=1}^{n} \lambda_{j} \tau_{i}(\alpha_{j})$$

$$= \lambda_{1}\alpha_{1} + \sum_{j=2}^{n} \lambda_{j}\alpha_{j} - 2 \left(\sum_{j=1}^{n} \lambda_{j} < \alpha_{i}, \alpha_{j} > \right) \alpha_{i}$$

Since $\tau_i \alpha \in \Phi$, $\tau_i \alpha$ is either positive or negative. But it has at least one positive coefficient λ_1 , we conclude that all coefficients are non-negative and so that $\tau_i \alpha \in \Phi^+$.

2.19. Definition. The semi-Euclidean roots $\alpha_1, ..., \alpha_n$ in the base π are called $simple\ semi-Euclidean\ roots$. The semi-Euclidean reflections $\tau_1, \tau_2, ..., \tau_n$ along the simple semi-Euclidean roots are called $simple\ semi-Euclidean$ reflections of \mathcal{G} .

We denote by \mathcal{G}_t the subgroup $< \tau_i : 1 \le i \le n > \text{of } \mathcal{G}$. It will be shown (Theorem 2.22) that $\mathcal{G}_t = \mathcal{G}$, that is, \mathcal{G} is generated by its simple semi-Euclidean reflections.

2.20. Lemma.If $\alpha \in V$, there is a transformation $T \in \mathcal{G}_t$ such that $< T\alpha$, $\alpha_i > \geq 0$ for all $\alpha_i \in \pi$.

Proof. Let $\alpha_0 = \frac{1}{2} \sum_{\alpha \in \Phi^+} \alpha$. Since \mathcal{G}_t is a finite group, it is possible to choose $T \in \mathcal{G}_t$ such that $< T\alpha$, $\alpha_0 >$ is maximal. If τ_i is the semi-Euclidean reflection along α_i , then by the preceding lemma we have:

$$\begin{split} \tau_i \alpha_0 &= \tau_i (\frac{1}{2} \alpha_i + \frac{1}{2} \sum \{ \alpha \in \Phi^+ \ : \ \alpha \neq \alpha_i \}) \\ &= -\frac{1}{2} \alpha_i + \frac{1}{2} \sum \{ \alpha \in \Phi^+ \ : \ \alpha \neq \alpha_i \} \\ &= \frac{1}{2} \sum \{ \alpha \ : \ \alpha \in \Phi^+ \} - \alpha_i \\ &= \alpha_0 - \alpha_i \end{split}$$

By the maximality of < $T\alpha$, $\,\alpha_0\,>$ we have < $T\alpha$, $\,\alpha_0\,> \ge <$ $\,\tau_i T\alpha$, $\,\alpha_0\,>$. On the other hand

$$<\tau_{i}T\alpha , \alpha_{0} > = (\epsilon \tau_{i}T\alpha , \alpha_{0})$$

$$= (\tau_{i}T\alpha, \epsilon \alpha_{0})$$

$$= (T\alpha , \tau_{i}^{t}\epsilon \alpha_{0})$$

$$= (T\alpha , \epsilon \tau_{i}\epsilon \epsilon \alpha_{0})$$

$$= (T\alpha , \epsilon \tau_{i}\epsilon \epsilon \alpha_{0})$$

$$= (\epsilon T\alpha , \tau_{i}\alpha_{0})$$

$$= (\epsilon T\alpha , \tau_{i}\alpha_{0})$$

$$= (\epsilon T\alpha , \tau_{i}\alpha_{0})$$

Then we have

$$< T\alpha \;,\; \alpha_0 > \ge < T\alpha \;,\; \tau_i\alpha_0 > = < T\alpha \;,\; \alpha_0-\alpha_i \;> = < T\alpha \;,\; \alpha_0 > \; - \; < T\alpha \;,\; \alpha_i > \;$$

2.21. Lemma. If $\alpha \in \Phi^+$, then $T\alpha \in \pi$ for some $T \in \mathcal{G}_t$.

Proof. If $\alpha \in \pi$, we can choose $T=1g_i$. If $\alpha \notin \pi$, then it follows Lemma 2.13, Lemma 2.14 and Theorem 2.15 that $<\alpha_{i_1}$, $\alpha><0$ or $<\alpha_{i_1}$, $\alpha>>0$ for some semi-Euclidean root $\alpha_{i_1}\in\pi$; otherwise, $\pi\cup\{\alpha\}$ would be linearly independent. Let $a_1=\tau_{i_1}\alpha=\alpha-2$ $<\frac{<\alpha_{i_1},\alpha>}{<\alpha_{i_1},\alpha_{i_1}>}\alpha_{i_1}$. By Lemma 2.18 $a_1\in\Phi^+$, and

$$<~a_1~,~t~> \; = \; <~\alpha~,~t~> \; -~2~\frac{<~\alpha_{i_1}~,~\alpha~>}{<~\alpha_{i_1}~,~\alpha_{i_1}~>} \; <~\alpha_{i_1}~,~t~>$$

If $a_1 \in \pi$, set $T = \tau_{i_1} \in \mathcal{G}_t$. If $a_1 \not\in \pi$, apply the above process to a_1 , obtaining $\alpha_{i_2} \in \pi$, and $a_2 = \tau_{i_2}(a_1) = \tau_{i_2}\tau_{i_1}\alpha \in \Phi^+ < a_2$, $t > < < a_1$, t >. If $a_2 \in \pi$, set $T = \tau_{i_2}\tau_{i_1} \in \mathcal{G}_t$; if $a_2 \not\in \pi$, the process is continued. Since Φ^+ is finite, the process must terminate with some $a_k \in \pi$. Then $a_k = \tau_{i_k}...\tau_{i_1}\alpha$ and if we set $T = \tau_{i_k}...\tau_{i_1} \in \mathcal{G}_t$, then lemma is proved.

2.22. Theorem. The simple semi-Euclidean reflections $\tau_1, \tau_2, \dots, \tau_n$ generate \mathcal{G} , that is, $\mathcal{G}_t = \mathcal{G}$.

Proof. Since $\mathcal{G} = \langle \tau_{\alpha} : \alpha \in \Phi \rangle$ and since $\tau_{-\alpha} = \tau_{\alpha}$, it will be sufficient to prove that if $\alpha \in \Phi^+$, then $\tau_{\alpha} \in \mathcal{G}_t$. Let $\alpha \in \Phi^+$. By the preceding lemma

there is a transformation $T \in \mathcal{G}_t$ such that $T\alpha \in \pi$, say $T\alpha = \alpha_i$. By Lemma 2.2 we have $\tau_{\alpha} = T^{-1}\tau_i T \in \mathcal{G}_t$.

We note that a reflection τ is a semi-Euclidean reflection if and only if $\tau\epsilon=\epsilon\tau$, that is, a reflection is not a semi-Euclidean reflection in general.

References

- [1] N. BOURBAKI, Groupes et algèbres de Lie, Chapters 4,5,6, Actualites Sci. Induct 1337, Hermann, Paris, 1968.
- [2] R. W. CARTER, Simple Groups of Lie Type, Wiley, London, 1989.
- [3] H. S. M. COXETER, Discrete groups generated by reflections, Annal. Math., 35 (1934), 588-621.
- [4] H. S. M. COXETER, it Regular Polytopes, 2nd ed. Macmillan, New York, 1985.
- [5] L. C. GROVE and C. T. BENSON, Finite Reflection Groups, Springer Verlag, New York, 1985.
- [6] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge, 1990.
- [7] B. O'NEILL, Semi-Riemannian Geometry, Academic Press, New York, 1983.
- [8] D. E. TAYLOR, The Geometry of the Classical Groups, Heldermann Verlag, Berlin, 1992.
- [9] E. Witt, Spiegelungsgruppen und Aufzahlung halbeinfachen Liescher Ringe, Abhandl. Math. Sem. Univ. Hamburg 14 (1941), 289-337.