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ABSTRACT	

The	 unit	 root	 test	 proposed	 by	 Ranjbar	 et	 al.	 (2018)	was	 examined	 for	 an	 alternative	 of	 stationary	
asymmetric	 exponential	 smooth	 transition	 autoregressive	 (AESTAR)	 under	 structural	 breaks.	 The	
situation	that	stands	out	as	a	deficiency	in	the	mentioned	study	was	that	the	model	that	does	not	includes	
the	zero-mean	structure	not	taken	into	account.	On	the	contrary,	the	features	of	the	zero-mean	model	
should	also	had	been	explained.	Because	time-varying	deterministic	terms	were	removed	from	the	time	
series	for	describing	the	structural	breaks.	The	fact	that	no	deterministic	terms	were	formed	due	to	the	
transformation	during	the	redefinition	of	the	difference	equation	indicates	that	the	obtained	structure	
should	be	evaluated	 in	 the	model	 structure	with	 zero-mean.	This	 test	methodology	developed	as	an	
alternative	is	the	interpretation	of	Sollis	(2009)	model	under	Fourier	series	that	can	be	called	Fourier-
Sollis	test	for	zero-mean	model	condition.	The	critical	values	in	terms	of	finite	samples	were	calculated	
and	 the	 size	 and	 power	 properties	 were	 evaluated.	 The	 power	 properties	 of	 the	 Fourier-Sollis	 and	
Fourier-KSS	tests	were	compared	under	the	assumption	of	symmetric/asymmetric	reversions.	Under	
the	asymmetric	 reversions,	Fourier-Sollis	 test	was	 found	 to	be	more	 successful.	However,	under	 the	
symmetric	assumption,	these	tests	can	be	used	together.	

	

ÖZ	

Ranjbar	 ve	 diğerleri	 (2018)	 tarafından	 önerilen	 birim	 kök	 testi,	 yapısal	 kırılmalar	 altında	 asimetrik	
yönelime	 izin	veren	üssel	 yumuşak	geçişli	 otoregresif	 (AESTAR)	model	yapılarının	durağanlıklarının	
incelenmesine	izin	vermektedir.	Bu	çalışmada	eksiklik	olarak	göze	çarpan	deterministik	terim	yapısını	
içermeyen	model	yapısı	dikkate	alınmıştır.	Çünkü	zamana	bağlı	değişen	deterministik	terimler,	yapısal	
kırılmayı	 tanımlamak	 adına	 zaman	 serisinden	 uzaklaştırılmaktadır.	 Fark	 denkleminin	 yeniden	
tanımlanması	 sırasında	 da	 dönüşümden	 dolayı	 herhangi	 bir	 deterministik	 terimin	 oluşmaması,	 elde	
edilen	yapının	sıfır	ortalamaya	sahip	model	yapısında	değerlendirilmesi	gerektiğine	işaret	etmektedir.	
Bu	 durum	 için,	 sonlu	 örneklem	 altında	 kritik	 değerler	 hesaplanmış	 ve	 boyut/güç	 özellikleri	
değerlendirilmiştir.	Alternatif	olarak	geliştirilen	bu	test	yöntemi	Sollis	(2009)	modelinin	Fourier	serileri	
altında	yorumlanması	halindedir	ve	Fourier-Sollis	olarak	adlandırılmıştır.	Fourier-Sollis	ve	Fourier-KSS	
testlerinin	 güç	 özellikleri	 simetrik/asimetrik	 yönelimleri	 altında	 karşılaştırılmıştır.	 Elde	 edilen	
sonuçlara	göre,	Fourier-Sollis	testi	asimetrik	varsayım	altında	daha	güçlü	bulunmuştur.	Ancak	simetrik	
varsayım	altında	bu	testler	birlikte	kullanılabilir.	

Keywords:	Unit	Root,	
AESTAR,	Multi-
Structural	Breaks.	
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Birim	Kök	Testleri,	
AESTAR,	Çoklu	Yapısal	
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I.	Introduction	

The	 use	 of	 nonlinear	 model	 structures	 in	 the	 modeling	 of	 time	 series	 under	 the	 exponential	 smooth	
transition	 (ESTAR)	 model,	 the	 concept	 of	 global	 stationary	 has	 recently	 become	 popular.	 With	 this	
situation,	it	has	become	possible	to	determine	the	time	series	are	stationary	if	the	data	generation	process	
is	nonlinear.	The	ESTAR	model	structure	can	be	redefined	by	taking	the	first	differences.	It	is	an	exponential	
function	that	gives	non-linearity	to	the	structure.	The	transition	variable	in	nonlinear	part	is	expressed	as	
𝑦!"# .	For	the	transition	variable,	it	was	assumed	d=1	to	clarify	empirical	practices.	

	

𝑦! = 𝛽𝑦!"$ + 𝛾𝑦!"$(1 − exp	(−𝜃(𝑦!"# − 𝑐)%)) + 𝜀!		 	 	 	 	 																							(1)	

	

△ 𝑦! = 𝜙𝑦!"$ + 𝛾𝑦!"$(1 − exp	(−𝜃(𝑦!"# − 𝑐)%)) + 𝜀!	 	 	 	 	 											 			(1.1)	

By	taking	first	difference,	the	autoregressive	term	becomes	as	𝜙 = 𝛽 − 1.	At	the	ESTAR	structure	𝜃	term	
refers	to	reversion	speed.	Threshold	parameter	(𝑐)	is	an	exhibition	of	time	series	behavior	like	a	repressed	
or	 broken	 appearance	 when	 time-series	 approach	 it.	 Sarantis	 (1999)	 summarizes	 that	 ESTAR	 model,	
includes	 that	 regimes	with	 similar	dynamics,	 but	 the	 transition	dynamics	 can	be	different.	This	 can	be	
explained	as	a	change	in	regime	when	approaching	the	threshold.	Also	by	moving	away	from	the	threshold	
term	 (c),	 causing	 the	 time	 series	 instability	 increases.	 So	 the	 stationary	 of	 the	 return	 series	 must	 be	
questioned	under	this	assumption.	As	such,	these	parameters	in	the	ESTAR	model	must	be	identified,	thus	
stationary	of	time	series	can	be	accurately	defined.	

	

Kapetanios	et	al.	(KSS)	(2003)	unit	root	test	takes	into	account	symmetrical	ESTAR	structure	by	assuming	
as	threshold	value	is	zero	𝑐 = 0.	By	differencing	of	applied	first-order	Taylor	expansion	of	ESTAR	model	
for	 the	 condition	 y	 =	 0,	 auxiliary	 equation	 is	 obtained	 to	 suppress	 identification	 problem	 of	 nonlinear	
structure.	The	use	of	Taylor	expansion	especially	ESTAR	model	structure	in	unit	root	tests	is	an	application	
that	eliminates	the	problem	of	the	determination	of	coefficients	of	nonlinear	structure.	Method	is	based	on		
redefining	the	difference	equation	with	Taylor	transformation.	

	

∆𝑦! = 𝛿𝑦!"$& + 𝑢!		 	 	 	 	 	 	 	 	 	 (1.2)	

	

The	 unit	 root	 structure	 of	 time	 series	 is	 tested	 with	 𝑡	 statistic	 for	 the	 null	 hypothesis	 𝛿 = 0	 and	 its	
alternative	𝛿 < 0.	 The	 test	 statistic	 obtained	 as	 	𝑡'( = 𝛿9 𝑠. 𝑒. (𝛿9⁄ )	 by	 auxiliary	 equation.	 The	 value	𝛿9	 is	
estimated	from	the	auxiliary	regression	with	the	least	squares.	There	are	two	assumptions	of	the	test	which	
are	being	 symmetric	 in	mean	reversion	and	being	zero	value	of	 the	 threshold.	This	 structure	has	been	
expanded	by	Sollis	(2009)	to	consider	the	asymmetry	and	the	threshold	effect	by	Kruse	(2011).		

	

Sollis	 (2009)	 developed	 a	 unit	 root	 test	 for	 ESTAR	 models	 that	 considers	 symmetric	 or	 asymmetric	
reversions.	It	can	be	said	to	as	a	special	case	of	KSS	(2003)	test.	This	model	including	the	asymmetry	as	it	
is	called	AESTAR.	In	AESTAR,	asymmetry	is	provided	by	using	S!(𝜃%; 𝑦!"#)	logistic	function	and	G!(𝜃$; 𝑦!"#)	
exponential	function	as	transition.	The	first	order	difference	equation	is	shown	below.	

	

∆𝑦! = G!(𝜃$; 𝑦!"#)AS!(𝜃%; 𝑦!"#)𝛾$ + B1 − S!(𝜃%; 𝑦!"#)C𝛾%D𝑦!"$ + 𝜀! ,	for	𝜀!~𝑖𝑖𝑑(0, 𝜎%)			 	 						(2)	

G!(𝜃$; 𝑦!"#) = 1 − exp	(−𝜃$𝑦!"#% ),		𝜃$ ≥ 0		 	 	 	 	 	 	 	

S!(𝜃%; 𝑦!"#) = [1 − exp	(−𝜃%𝑦!"#% )]"$,		𝜃% ≥ 0		 	 	 	 	 	 	 			

	

As	in	the	KSS	(2003)	test,	the	use	of	auxiliary	regression	is	performed	under	Taylor	expansion.	But	if	the	
same	solution	is	used,	𝜃%, 𝛾$, 𝛾%	these	parameters	will	remain	unknown.	𝜃$ = 0	assumed	for	the	first	order	
Taylor	expansion	of	the	exponential	transition	function	G!(𝜃$; 𝑦!"#)	becomes,	
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	∆𝑦! = 𝛾$𝜃$𝑦!"$& S!(𝜃%; 𝑦!"#)𝛾$ + 𝛾%𝜃$𝑦!"$& B1 − S!(𝜃%; 𝑦!"#)C + 𝜂!			 	 	 	 	 		(2.1)	

	

The	error	term	𝜂!	contains	both	the	error	term	𝜀!	and	residues	𝑅!	from	the	Taylor	transformation.	Residues	
occur	during	Taylor	expansion	of	the	exponential	function.	This	conversion	is	not	sufficient	because	𝜃%	term	
is	not	defined.	So,	it	is	provided	to	change	from	S!(𝜃%; 𝑦!"#)	to	𝑆!∗(𝜃%; 𝑦!"#).		

	

	∆𝑦! = 𝛾$∗𝜃$𝑦!"$& 𝑆!∗(𝜃%; 𝑦!"#)𝛾$ + 𝛾%∗𝜃$𝑦!"$& B1 − 𝑆!∗(𝜃%; 𝑦!"#)C + 𝜂!					 	 	 	 		(2.2)	

	

The	 transition	 becomes	 𝑆!∗(𝜃%; 𝑦!"#) = S!(𝜃%; 𝑦!"#) − 0.5,	 which	 is	 explained	 for	 the	 limit	 value	 of	 the	
logistic	function.	The	redefinition	of	the	logistics	function;	𝛾$∗,	𝛾%∗	will	change	to	become	a	linear	function	of	
the	terms	𝛾$,	𝛾%.	When	the	Taylor	transformation	for	𝑆!∗(𝜃%; 𝑦!"#)	𝜃% = 0	is	applied	to	the	redefined	logistics	
function;	

	

∆𝑦! = 𝑎(𝛾%∗ − 𝛾$∗)𝜃$𝜃%𝑦!"$* + 𝛾%∗𝜃$𝑦!"$& + 𝜂!	is	obtained.	For	𝑎 = 1 4⁄ 	the	difference	equation	becomes;	

	

∆𝑦! = 𝜙$𝑦!"$& + 𝜙%𝑦!"$* + 𝜂! ,	 the	parameters	of	 auxiliary	 regression	𝜙$ = 𝛾%∗𝜃$	 and	𝜙% = 𝑎(𝛾%∗ − 𝛾$∗)𝜃$𝜃%	
contains.	The	corrected	version	of	the	difference	equation	is	accepted	as	auxiliary	regression.	

	

∆𝑦! = 𝜙$𝑦!"$& + 𝜙%𝑦!"$* +∑ 𝜌+∆𝑦!"+ +
,
+-$ 𝜂!		 	 	 	 	 	 	 		(2.3)	

	

It	is	mainly	based	on	the	unit	root	regime	and	the	model	structure	that	allows	two	symmetric	and	similar	
regiments.	If	time	series	approximate	to	the	threshold	parameter,	it	will	behave	like	a	series	with	a	random	
walk.	 Sollis	 (2009)	 considers	 asymmetric	 reversion	 for	ESTAR	 structure.	However,	 it	 assumes	 that	 the	
threshold	parameter	is	zero,	such	as	KSS	(2003).	

In	 both	 tests,	 the	 assumption	 that	 the	 threshold	 value	 is	 zero	 was	 accepted.	 However,	 if	 statistically	
significant	estimates	of	threshold	value	are	encountered	then	this	assumption	is	being	loosened	and	will	
become	a	non-standard	 test	procedure.	For	example,	 it	 can	be	assumed	that	real	parity	exchange	rates	
behave	asymmetrically	despite	the	rise	or	fall	of	prices	in	the	same	proportion	with	the	effect	of	domestic	
and	foreign	policy	makers.	It	is	observed	that	there	is	evidence	that	the	real	parities	have	an	asymmetric	
structure	against	the	US	dollar	(Sollis,	2002,	p.	692).	Later,	Kruse	(2011)	test,	which	allows	the	threshold	
value	of	ESTAR	structure	to	be	evaluated	as	a	non-zero	value,	is	developed.	Thus,	the	threshold	value	can	
take	other	than	zero.	However,	the	above	tests	consider	nonlinearity	but	do	not	take	into	account	structural	
breaks.	Unit	root	tests	under	structural	breaks	have	been	used	since	Perron	(1989).	But	identification	of	
structural	breaks	on	unit	root	tests	by	using	Fourier	transform	methodology	can	be	used	as	a	new	approach.	
Thus,	varying	regimes	using	Fourier	series	can	be	carried	out	to	model,	which	are	regardless	of	the	type	of	
breaks,	number	of	breaks	and	where	it	occurs.		

The	explanation	of	structural	breaks	with	Fourier	series	can	be	expressed	by	the	time-based	variation	of	
the	 deterministic	 variables	 observed	 in	 the	 time	 series.	 Even	 if	 there	 is	 a	 structural	 break	 in	 terms	 of	
economic	series,	they	will	not	be	chaotic.	This	situation	of	the	impact	on	economic	data	will	not	last	forever	
from	the	moment	it	takes	place.	Market	will	get	used	to	this	new	condition	and	the	regime	of	the	series	will	
take	on	a	finite	structure	again.	No	matter	how	many	times	there	are	breaks,	an	economic	or	financial	data	
in	 terms	 of	 the	 market	 will	 maintain	 its	 finite	 structure.	 So,	 it	 seems	 quite	 logical	 to	 define	 all	 these	
deterministic	variables	and	their	changes	by	defining	the	time	structure	under	the	frequency	structure.	In	
this	 case,	 it	becomes	much	more	 logical	 to	question	 the	 stationarity	of	 a	 series	 free	 from	 these	effects.	
Because	the	problem	is	that	unit	root	tests	lose	their	power	despite	structural	break.	The	purpose	of	all	
unit	root	tests	that	take	into	account	the	structural	break	developed	since	Perron	(1989)	is	to	eliminate	
this	power	loss.		
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Becker	et	al.	(2004),	Enders	and	Lee	(2004)	and	Becker	et	al.	(2006)	have	used	a	special	case	of	the	Fourier	
expansion	for	the	unknown	number	of	refractions,	for	the	deterministic	component	𝛿(𝑡),	which	changes	
with	time	and	is	of	unknown	form.	Let	be	a	𝛿(𝑡)	deterministic	component	in	the	time	series		𝑦! .	

	

𝑦! = 𝛿(𝑡) + 𝜈!	for	𝜈! ∼ 𝑁(0, 𝜎%)							 	 	 	 	 	 	 	 						(3)	

	

𝛿(𝑡) = 𝛿. + ∑ 𝛿$/𝑠𝑖𝑛 Y
%0/!
1
Z2

/-$ + ∑ 𝛿%/𝑐𝑜𝑠 Y
%0/!
1
Z2

/-$ 				 	 	 	 	 	 						(4)	

It	is	the	number	of	frequencies	(𝑘)	in	the	Fourier	function.	(𝑡)	is	the	trend	term	and	(𝑇)	is	the	sample	size.	
The	larger	the	number	of	frequency	trials	in	the	structure,	the	better	approximation	to	the	unknown	form	
𝛿(𝑡).	As	such,	the	null	hypothesis	of	𝛿/ ≠ 0	must	be	rejected	in	order	to	find	the	optimal	frequency	number.	
The	frequency	number	before	the	rejection	can	be	preferred	as	the	most	suitable	structure.	The	presence	
of	a	single	statistically	appropriate	structure	indicates	that	there	is	at	least	one	structural	change	in	the	
data	 generation	 mechanism.	 Model	 specification	 error	 may	 occur	 in	 the	 series	 defined	 by	 Fourier	
expansion.	In	order	to	solve	the	problem,	the	most	suitable	frequency	should	be	selected	(Ludlow	&	Enders,	
2000,	p.	338-340).	This	method	has	an	advantage	over	other	tests	that	attempt	endogenously	for	the	form	
of	 structural	 break,	 since	 no	 a	 priori	 about	 its	 form	 is	 needed.	 This	 is	 the	 most	 practical	 part	 of	 its	
application.	If	the	frequency	value	was	known	precisely,	the	presence	of	structural	breaks	in	an	unknown	
number	 and	 form	 could	 be	 tested.	 However,	 the	 (𝑘)	 frequency	 value	 is	 unknown.	 Finding	 the	 most	
appropriate	frequency	value	𝑘	that	provides	the	most	convergence	by	trying	in	order	of		𝑘 = 1,2,… . ,5		and	
generally	it	can	be	seen	that	states	𝑘 = 1	or	𝑘 = 2		in	applications	(Becker	et	al.,	2006,	p.	390).	

Another	method	 is	 to	 choose	 the	most	 appropriate	 frequency	 value	 that	will	minimize	 the	 sum	of	 the	
squares	of	the	error	terms	in	the	model.	When	the	fractional	values	of	another	point	(𝑘)	are	not	used	in	the	
most	 appropriate	 frequency	 selection,	 the	 fact	 that	 the	 start	 and	 end	 values	 of	 the	 function	 are	 equal	
ensures	 that	 the	breaks	 are	 temporary.	The	 series	 (𝑦!)	 	 should	 contain	 a	break	 in	 the	data	 generation	
mechanism,	 and	 the	 deterministic	 variable	 drawn	 from	 the	 structure	 should	 be	 determined	 by	 fourier	
modeling.	The	existence	of	the	break	can	be	questioned	by	testing	the	𝐻.: 𝛿$ = 𝛿% = 0	null	hypothesis	of	
the	obtained	deterministic	variable,	and	the	alternative	hypothesis	𝐻$: 𝛿$ ≠ 𝛿% ≠ 0.	The	obtained	𝐹	statistic	
was	named	 as	𝐹3B𝑘dC	 and	 its	 distributions	were	determined	by	Monte-Carlo	 simulations	 and	 tabulated.	
Critical	values	of	the	test	were	established	by	Ludlow	and	Enders	(2000).	Becker	et	al.	(2006)	tabulated	the	
test	statistics	for	the	asymptotic	distribution	of	the	𝑡-statistics	values	according	to	the	frequency	values	(𝑘)	
of	the	Fourier	series.		

The	 statistical	 significance	 of	 the	 obtained	 frequency	 structure	 indicates	 the	 presence	 of	 breaks.	
Christopoulos	and	León-Ledesma	(2010)	developed	the	new	unit	root	tests	explaining	multiple	structural	
breaks	with	Fourier	series.	Two	of	them	are	called	Fourier-ADF	and	Fourier-KSS.	Christopoulos	and	León-
Ledesma	(2010)	tried	to	explain	the	Purchasing	Power	Parity	(PPP)	under	breaks	and	nonlinear	structure.	
In	particular,	price	bubbles	observed	in	exchange	rates	cause	prices	to	deviate	from	the	average	and	cause	
sudden	breaks.	This	state	caused	by	structural	breaks	do	not	prevent	time	series	from	reaching	their	long-
term	equilibrium.	For	this	reason,	the	unit	root	tests	used	should	allows	breaks	and	also	allow	return	to	the	
mean.	Similarly,	in	this	study	to	development	of	Fourier-Sollis	unit	root	test	is	combines	the	two	previous	
test	structures.	This	new	test	is	formed	by	combining	test	mechanisms	which	takes	asymmetric	orientation	
into	 consideration	 Sollis	 (2009),	 and	 ,	 which	 consider	 multiple	 structural	 breaks	 under	 the	 Fourier	
structure	Christopoulos	and	León-Ledesma	(2010).	The	main	point	for	all	models	is	that	the	unit	root	test	
is	 applied	 after	 the	 removing	 structural	 breaks	 that	 are	 accepted	 as	 a	 deterministic	 variable.	 By	 the	
obtained	model	errors,	the	unit	root	structure	of	the	series	can	be	examined.	The	return	to	mean	can	be	
considered	non-linear	or	linear.	The	relevant	models	for	all	these	cases	are	given	below.		

∆𝑣! = 𝑝$𝑣!"$Y1 − 𝑒𝑥𝑝(−𝜃∆𝑣!"4% )Z + ∑ 𝛼+∆𝑣!"+
5
+-$ + 𝑢! ,			𝑖 = 0,1, …… , 𝐿.			 	 	 	 		(3.1)	

	

∆𝑣! = 𝜆$𝑣!"$& +∑ 𝛽+∆𝑣!"+
5
+-$ + 𝑢!		 	 	 	 	 	 	 	 		(3.2)	

In	this	study,	 it	 is	aimed	for	model	without	any	deterministic	term	to	compare	the	power	properties	of	
Fourier-Sollis	 test	 with	 Fourier-KSS	 test	 under	 asymmetric	 and	 symmetric	 assumptions.	 The	 paper	 is	
organized	as	follows.	Section	I	includes	the	ESTAR	based	unit	root	processes	with	Taylor	expansion	and	
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definition	structural	breaks	by	Fourier	transformation.		Section	II	presents	critical	values,	size	and	power	
properties	of	developed	test.	All	these	calculations	are	provided	by	using	Eviews	10	program.	Section	III	
presents	the	conclusion	under	simulated	results.	

II.	Critical	Values,	Size	and	Power	Properties	of	Fourier-Sollis	Unit	Root	Test	

In	the	study,	critical	values	of	the	Fourier-Sollis	test	were	obtained	and	size	and	power	properties	for	the	
finite	samples	were	examined.	Here,	it	is	tried	to	determine	that	Fourier-Sollis	test	it	can	be	used	together	
or	 alternative	 of	 Fourier-KSS	 test.	 In	 their	 study,	 Ranjbar	 et	 al.	 (2018)	 developed	 an	 alternative	 test	
methodology	 for	 unit	 root	 determination	 in	 nonlinear	 time	 series,	 taking	 into	 account	 long-term	
equilibrium,	 structural	 breaks	 under	 asymmetric	 reversions.	 The	 selected	 nonlinear	 structure	 is	 the	
asymmetric	exponential	smooth	threshold	autoregressive	AESTAR	model.	Model	also	includes	symmetric	
ESTAR	 structure	 as	 a	 special	 case.	 Likewise,	 under	 structural	 breaks,	 it	 can	 be	 use	 the	 Fourier	
transformations.	The	model	structure	is	discussed	as	follows.	

	

𝑦! = 𝛿(𝑡) + 𝜈!	for	𝜈! ∼ 𝑁(0, 𝜎%)				 	 	 	 	 	 	 	 						(3)	

𝛿(𝑡) = 𝛿. + ∑ 𝛿$/𝑠𝑖𝑛 Y
%0/!
1
Z2

/-$ + ∑ 𝛿%/𝑐𝑜𝑠 Y
%0/!
1
Z2

/-$ 		 	 	 	 	 	 						(4)	

	

∆𝑣! = 𝛾$𝜃$𝑣!"$& S!(𝜃%; 𝑦!"#)𝛾$ + 𝛾%𝜃$𝑣!"$& B1 − S!(𝜃%; 𝑣!"#)C + 𝜂!		 	 	 	 	 		(3.3)	

∆𝑣! = 𝜙$𝑣!"$& + 𝜙%𝑣!"$* + ∑ 𝜌+∆𝑦!"+ +
,
+-$ 𝜂!		 	 	 	 	 	 															(3.3.1)	

When	structural	breaks	are	removed	from	the	time	series,	deterministic	terms	are	also	swept	away.	This	
shortcoming	is	the	removal	of	the	time-varying	deterministic	terms	on	which	the	Fourier	series	are	based	
when	describing	structural	breaks	from	the	model.	It	would	be	reasonable	to	examine	such	models	under	
the	mean	zero	model	structure	if	using	a	method	such	as	the	Taylor	transform	under	deterministic	terms	
removal	and	the	redefinition	of	the	model	does	not	produce	a	deterministic	variable.	This	study	is	built	on	
this	assumption.	This	is	the	part	where	the	paper	differs	from	the	original	work	and	is	seen	as	a	deficiency	
to	examine.	

For	 the	suggested	Fourier-Sollis	 test,	 firstly	critical	values	were	tried	to	be	determined.	Under	 the	𝑦! =
𝑦!"$ + 𝜀!	structure	where	ε6~(0, σ%),	50000	simulations	are	performed	for	𝑡 = 50, 100, 200, 1000, 10000	
finite	sample	values	and	critical	values	were	obtained	for	1%, 5%, 10%	statistical	significances.	In	addition,	
model	degrees	for	Fourier	transforms	are	determined	for	𝑘 = 1, 2, 3, 4, 5.		

The	critical	values	are	reported	in	Table	1.	When	the	results	are	evaluated,	it	is	observed	that	the	variation	
between	the	values	decreases	as	the	sample	size	approaches	to	1000.	There	is	almost	no	difference	between	
the	critical	values	obtained	for	the	sample	sizes	1000	and	10000.	

Table	1:	Critical	Values	for	Fourier-Sollis	Test	

Sample	Size		 	
𝐤 = 𝟏	

	

𝐤 = 𝟐	

	

𝐤 = 𝟑	

	

𝐤 = 𝟒	

	

𝐤 = 𝟓	

	

T=50	

1%	 10.436	 8.587	 8.011	 7.698	 7.433	

5%	 7.511	 6.033	 5.523	 5.295	 5.173	

10%	 6.272	 4.948	 4.518	 4.327	 4.225	

T=100	

1%	 9.780	 8.381	 7.769	 7.550	 7.329	

5%	 7.353	 6.104	 5.592	 5.374	 5.271	

10%	 6.247	 5.060	 4.621	 4.465	 4.355	

T=200	

1%	 9.847	 8.387	 7.792	 7.604	 7.456	

5%	 7.441	 6.165	 5.680	 5.501	 5.370	

10%	 6.325	 5.160	 4.731	 4.560	 4.452	

T=1000	
1%	 9.767	 8.413	 7.824	 7.522	 7.450	

5%	 7.472	 6.215	 5.738	 5.481	 5.425	
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Table	1:	Continue.	
	

10%	 6.391	 5.201	 4.781	 4.606	 4.507	

T=10000	

1%	 9.763	 8.268	 7.824	 7.553	 7.401	

5%	 7.540	 6.191	 5.745	 5.525	 5.382	

10%	 6.470	 5.164	 4.820	 4.615	 4.503	

	 	 	 	 	 	 	
	

Size	properties	of	the	developed	unit	root	test	under	autocorrelated	error	terms	were	examined	for	finite	
sample	and	provided	in	Table	2.	The	data	generation	process	was	considered	to	be	𝑦! = 𝑦!"$ + 𝜀! .	Error	
terms	 are	 defined	 as	 𝜀! = 	𝜌𝜀!"$ + 𝑢!	 over	 the	 specified	 time	 interval.	 Here,	 the	 white	 noise	 term	
𝑢!~𝑖𝑖𝑑(0,1)	is	defined	as	the	autocorrelation	term	𝜌 = −0.5, 0, 0.5	of	the	error	terms.	20000	simulations	
were	performed	for	𝑇 = 1000.		

Table	2.	Size	Properties	for	Fourier-Sollis	Test	

	

	
	 𝐤 = 𝟏	 𝐤 = 𝟐	 𝐤 = 𝟑	 𝐤 = 𝟒	 𝐤 = 𝟓	

𝛒 = −𝟎. 𝟓	

1%	 0.00995	 0.00885	 0.00975	 0.00830	 0.00815	

5%	 0.04725	 0.04700	 0.05100	 0.04855	 0.04565	

10%	 0.09585	 0.09315	 0.10155	 0.09540	 0.09345	

𝛒 = 𝟎	

1%	 0.00975	 0.00935	 0.01010	 0.01030	 0.01065	

5%	 0.05315	 0.04730	 0.04900	 0.04980	 0.05165	

10%	 0.10635	 0.09755	 0.10075	 0.09685	 0.10320	

𝛒 = 𝟎. 𝟓	

1%	 0.01000	 0.01000	 0.00995	 0.00945	 0.00870	

5%	 0.05080	 0.04775	 0.04730	 0.05155	 0.04645	

10%	 0.10335	 0.09585	 0.09790	 0.09905	 0.09590	

When	the	size	properties	obtained	for	the	different	𝑘	Taylor	degrees	were	examined	in	Table	2,	it	was	found	
that	the	test	did	not	have	any	size	distortions.	However,	as	the	degree	of	model	increases,	there	is	little	
degradation	in	size.	

The	power	characteristics	of	the	developed	Fourier − Sollis	test	were	examined	under	the	assumption	of	
symmetric	mean	reversions	as	in	FADF	and	Fourier-KSS	tests.	10000	trials	were	tabulated	for	the	Taylor	
model	 degrees	 with	 different	 coefficient	 values	 for	 T = {100, 250},	 ρ = {−1.5, −1.0, −0.5, −0.1},	 θ =
{0.01, 0.5, 1.0	},	δ. = 0,	δ$ = δ% = 0.1	and	k = 1, 2, 3.	The	results	are	displayed	in	Table	3.	The	critical	values	
used	for	the	power	properties	of	the	compared	Fourier-KSS	test,	and	the	values	obtained	in	the	study	of	
Christopoulos	and	León-Ledesma	(2010)	were	used	at	Table	3.	In	determining	the	power	characteristics,	
the	degree	of	lag	determined	in	terms	of	the	most	suitable	model	structure	was	selected	depending	on	the	
value	of	the	Akaike	information	criterion,	with	a	maximum	of	𝑝 = 8.	

𝑦! = 𝛿. + 𝛿$𝑠𝑖𝑛 Y
%0/!
1
Z + 𝛿%𝑐𝑜𝑠 Y

%0/!
1
Z + 𝑣!		 	 	 											 	 	 	 						(3)	

𝑣! = 𝑝𝑣!"$B1 − 𝑒𝑥𝑝(−𝜃∆𝑣!"$% )C + ∑ 𝛼+∆𝑣!"+
,
+-$ + 𝑢!		 											 	 	 	 	 		(3.2)	

If	 the	 obtained	 results	 are	 summarized,	 Fourier-KSS	 test	 becomes	 stronger	when	 ρ	 values	 increase	 in	
negative	direction.	The	fact	that	the	value	of	ρ	moves	away	from	zero	causes	the	structure	to	converge	to	
the	unit	root	structure.	As	θ	values	increase	positive	direction,	Fourier-Sollis	test	becomes	stronger.	The	
success	of	the	tests	increases	as	the	transition	rate	θ	increases	between	the	regimes	in	the	model	structure.	
As	a	result,	the	power	characteristics	of	the	Fourier-Sollis	test	under	symmetric	assumption	are	similar	to	
the	Fourier-KSS	test.	

Power	characteristics	of	the	tests	were	examined	under	the	assumption	of	symmetric	mean	reversion	and	
the	results	obtained	were	compared	for	Fourier-KSS	and	Fourier-Sollis	tests	in	Table	3.	The	power	of	the	
test	decreases	as	the	selected	𝜌	coefficient	value	approaches	zero.	This	means	that	as	parameter	coefficient	
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𝑝	 moves	 away	 from	 zero,	 it	 approaches	 the	 unit	 root	 structure.	 When	 the	 parameter	 coefficient	 𝜃	
approaches	unit	value,	similarly	the	power	of	the	test	increases.	As	the	transition	rate	between	regimes	
increases	in	the	model	structure,	the	success	of	the	tests	increases.	Under	the	test	results	obtained,	Fourier-
Sollis	test	is	similar	to	Fourier-KSS	test.		These	results	show	that	the	two	tests	can	be	used	interchangeably	
for	the	assumption	of	symmetric	mean	reversions.	

Table	3.	Empirical	Power	Properties	Under	the	Assumption	of	Symmetric	Mean	Reversion	for	Fourier-
KSS	and	Fourier-Sollis	Tests	

𝜹𝟏 = 𝜹𝟐 = 𝟎. 𝟏	

𝒕 = 𝟏𝟎𝟎	

Fourier-KSS	

	

Fourier-Sollis	

	

k=1	 k=2	 k=3	 k=1	 k=2	 k=3	

p = −1.5	 θ = 0.1	 0.656	 0.719	 0.730	 0.655	 0.720	 0.722	

p = −1.5	 θ = 0.5	 0.908	 0.946	 0.959	 0.921	 0.956	 0.968	

p = −1.5	 θ = 1.0	 0.810	 0.858	 0.880	 0.867	 0.907	 0.917	

p = −1.0	 θ = 0.1	 0.452	 0.517	 0.530	 0.436	 0.494	 0.502	

p = −1.0	 θ = 0.5	 0.858	 0.901	 0.913	 0.871	 0.909	 0.918	

p = −1.0	 θ = 1.0	 0.875	 0.924	 0.937	 0.890	 0.934	 0.941	

p = −0.5	 θ = 0.1	 0.242	 0.235	 0.234	 0.233	 0.210	 0.209	

p = −0.5	 θ = 0.5	 0.605	 0.692	 0.728	 0.594	 0.689	 0.711	

p = −0.5	 θ = 1.0	 0.742	 0.821	 0.843	 0.744	 0.830	 0.845	

p = −0.1	 θ = 0.1	 0.243	 0.192	 0.183	 0.261	 0.207	 0.200	

p = −0.1	 θ = 0.5	 0.192	 0.165	 0.160	 0.190	 0.156	 0.148	

p = −0.1	 θ = 1.0	 0.184	 0.170	 0.172	 0.175	 0.159	 0.151	

𝜹𝟏 = 𝜹𝟐 = 𝟎. 𝟏	

𝒕 = 𝟐𝟓𝟎	

Fourier-KSS	

	

Fourier-Sollis	

	

k=1	 k=2	 k=3	 k=1	 k=2	 k=3	

p = −1.5	 θ = 0.1	 0.894	 0.932	 0.949	 0.916	 0.952	 0.964	

p = −1.5	 θ = 0.5	 0.998	 0.999	 0.999	 0.999	 1.000	 1.000	

p = −1.5	 θ = 1.0	 0.981	 0.987	 0.991	 0.988	 0.994	 0.995	

p = −1.0	 θ = 0.1	 0.761	 0.839	 0.861	 0.786	 0.866	 0.889	

p = −1.0	 θ = 0.5	 0.990	 0.995	 0.995	 0.995	 0.998	 0.998	

p = −1.0	 θ = 1.0	 0.993	 0.997	 0.998	 0.996	 0.998	 0.999	

p = −0.5	 θ = 0.1	 0.378	 0.470	 0.483	 0.379	 0.466	 0.479	

p = −0.5	 θ = 0.5	 0.909	 0.949	 0.958	 0.935	 0.966	 0.974	

p = −0.5	 θ = 1.0	 0.954	 0.981	 0.985	 0.969	 0.988	 0.991	

p = −0.1	 θ = 0.1	 0.188	 0.150	 0.134	 0.204	 0.161	 0.151	

p = −0.1	 θ = 0.5	 0.199	 0.252	 0.241	 0.197	 0.235	 0.231	

p = −0.1	 θ = 1.0	 0.250	 0.351	 0.349	 0.242	 0.340	 0.335	

In	Table	4,	the	power	characteristics	of	the	tests	under	asymmetric	assumption	were	examined	as	in	Sollis	
(2009).	Asymmetry	strengthens	as	the	𝛾$	and	𝛾%	values	determined	as	the	transition	function	coefficients	
move	away	from	each	other.	If	asymmetry	increases,	Fourier-Sollis	test	is	more	powerful	than	Fourier-KSS	
test.	 Inversely,	 if	 the	𝛾$	 and	𝛾%	 values	approach	each	other,	 asymmetry	decreases	and	Fourier-KSS	 test	
becomes	more	powerful.	This	situation	is	more	clearly	observed	when	the	Fourier	frequency	degree,	the	
number	of	samples	and	the	𝜃$	parameter	values	are	increase.	
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Table	4.	Empirical	Power	Properties	Under	the	Assumption	of	Asymmetric	Mean	Reversion	for	Fourier-
KSS	and	Fourier-Sollis	Tests	

T=100,	𝜹𝒊 = 𝟎. 𝟏, 𝒌 = 𝟏	 𝜽𝟏 = 𝟎. 𝟏		 𝜽𝟏 = 𝟏	

𝜸𝟏	 𝜸𝟐	 Fourier-KSS	 Fourier-Sollis	 Fourier-KSS	 Fourier-Sollis	
-0.05	 -1.00	 0.347	 0.383	 0.593	 0.687	
-0.05	 -0.90	 0.340	 0.357	 0.551	 0.635	
-0.05	 -0.70	 0.279	 0.283	 0.458	 0.504	
-0.05	 -0.30	 0.175	 0.157	 0.235	 0.223	
-0.05	 -0.10	 0.113	 0.100	 0.129	 0.114	
-0.05	 -0.05	 0.096	 0.085	 0.109	 0.093	
-0.10	 -1.00	 0.466	 0.490	 0.719	 0.831	
-0.10	 -0.90	 0.437	 0.451	 0.684	 0.793	
-0.10	 -0.70	 0.369	 0.373	 0.590	 0.655	
-0.10	 -0.30	 0.225	 0.212	 0.336	 0.320	
-0.10	 -0.10	 0.140	 0.123	 0.169	 0.150	
-0.10	 -0.05	 0.112	 0.100	 0.130	 0.118	
-0.30	 -1.00	 0.745	 0.755	 0.915	 0.963	
-0.30	 -0.90	 0.715	 0.717	 0.910	 0.955	
-0.30	 -0.70	 0.640	 0.635	 0.887	 0.919	
-0.30	 -0.30	 0.392	 0.362	 0.648	 0.633	
-0.30	 -0.10	 0.222	 0.202	 0.326	 0.307	
-0.30	 -0.05	 0.170	 0.144	 0.228	 0.220	

T=250,	𝜹𝒊 = 𝟎. 𝟏,	𝒌 = 𝟏	 𝜽𝟏 = 𝟎. 𝟏		 𝜽𝟏 = 𝟏	

𝜸𝟏	 𝜸𝟐	 Fourier-KSS	 Fourier-Sollis	 Fourier-KSS	 Fourier-Sollis	
-0.05	 -1.00	 0.678	 0.841	 0.698	 0.997	
-0.05	 -0.90	 0.666	 0.818	 0.692	 0.959	
-0.05	 -0.70	 0.623	 0.750	 0.674	 0.923	
-0.05	 -0.30	 0.456	 0.496	 0.557	 0.673	
-0.05	 -0.10	 0.251	 0.238	 0.310	 0.310	
-0.05	 -0.05	 0.171	 0.158	 0.207	 0.200	
-0.10	 -1.00	 0.882	 0.970	 0.851	 0.996	
-0.10	 -0.90	 0.882	 0.966	 0.847	 0.995	
-0.10	 -0.70	 0.847	 0.933	 0.858	 0.993	
-0.10	 -0.30	 0.713	 0.743	 0.787	 0.887	
-0.10	 -0.10	 0.402	 0.385	 0.493	 0.493	
-0.10	 -0.05	 0.262	 0.247	 0.309	 0.304	
-0.30	 -1.00	 0.996	 0.999	 0.975	 0.998	
-0.30	 -0.90	 0.995	 0.999	 0.980	 0.998	
-0.30	 -0.70	 0.994	 0.998	 0.982	 0.997	
-0.30	 -0.30	 0.965	 0.977	 0.983	 0.990	
-0.30	 -0.10	 0.702	 0.737	 0.798	 0.885	
-0.30	 -0.05	 0.468	 0.505	 0.566	 0.681	

T=100,	𝜹𝒊 = 𝟎. 𝟏,	𝒌 = 𝟐	 𝜽𝟏 = 𝟎. 𝟏		 𝜽𝟏 = 𝟏	

𝜸𝟏	 𝜸𝟐	 Fourier-KSS	 Fourier-Sollis	 Fourier-KSS	 Fourier-Sollis	
-0.05	
-0.05	

-1.00	
-0.90	

0.450	
0.424	

0.473	
0.441	

0.647	
0.625	

0.744	
0.712	

-0.05	 -0.70	 0.367	 0.374	 0.543	 0.599	
-0.05	 -0.30	 0.224	 0.200	 0.318	 0.305	
-0.05	 -0.10	 0.130	 0.109	 0.167	 0.143	
-0.05	 -0.05	 0.095	 0.081	 0.115	 0.097	
-0.10	 -1.00	 0.587	 0.609	 0.783	 0.883	
-0.10	 -0.90	 0.562	 0.578	 0.763	 0.858	
-0.10	 -0.70	 0.502	 0.490	 0.704	 0.767	
-0.10	 -0.30	 0.315	 0.284	 0.463	 0.455	
-0.10	 -0.10	 0.172	 0.144	 0.230	 0.202	
-0.10	 -0.05	 0.127	 0.105	 0.159	 0.139	
-0.30	 -1.00	 0.856	 0.866	 0.943	 0.974	
-0.30	 -0.90	 0.836	 0.843	 0.940	 0.974	
-0.30	 -0.70	 0.776	 0.773	 0.926	 0.956	
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Table	4.	Continue.	

-0.30	 -0.30	 0.550	 0.518	 0.791	 0.785	
-0.30	 -0.10	 0.304	 0.274	 0.462	 0.449	
-0.30	 -0.05	 0.225	 0.200	 0.316	 0.301	

T=250,	𝜹𝒊 = 𝟎. 𝟏, 𝒌 = 𝟐	 𝜽𝟏 = 𝟎. 𝟏		 𝜽𝟏 = 𝟏	

𝜸𝟏	 𝜸𝟐	 Fourier-KSS	 Fourier-Sollis	 Fourier-KSS	 Fourier-Sollis	
-0.05	 -1.00	 0.780	 0.909	 0.763	 0.981	
-0.05	 -0.90	 0.771	 0.900	 0.764	 0.973	
-0.05	 -0.70	 0.743	 0.861	 0.762	 0.959	
-0.05	 -0.30	 0.615	 0.673	 0.685	 0.800	
-0.05	 -0.10	 0.388	 0.375	 0.459	 0.460	
-0.05	 -0.05	 0.260	 0.234	 0.310	 0.294	
-0.10	 -1.00	 0.933	 0.990	 0.893	 0.998	
-0.10	 -0.90	 0.930	 0.986	 0.937	 0.998	
-0.10	 -0.70	 0.917	 0.978	 0.897	 0.996	
-0.10	 -0.30	 0.843	 0.881	 0.879	 0.951	
-0.10	 -0.10	 0.585	 0.576	 0.668	 0.668	
-0.10	 -0.05	 0.388	 0.375	 0.453	 0.456	
-0.30	 -1.00	 0.998	 1.000	 0.983	 0.999	
-0.30	 -0.90	 0.999	 1.000	 0.985	 0.998	
-0.30	 -0.70	 0.998	 0.999	 0.989	 0.998	
-0.30	 -0.30	 0.989	 0.994	 0.993	 0.997	
-0.30	 -0.10	 0.837	 0.880	 0.875	 0.952	
-0.30	 -0.05	 0.616	 0.670	 0.686	 0.805	

T=100,	𝜹𝒊 = 𝟎. 𝟏,	𝒌 = 𝟑	 𝜽𝟏 = 𝟎. 𝟏		 𝜽𝟏 = 𝟏	

𝜸𝟏	 𝜸𝟐	 Fourier-KSS	 Fourier-Sollis	 Fourier-KSS	 Fourier-Sollis	
-0.05	 -1.00	 0.483	 0.523	 0.677	 0.812	
-0.05	 -0.90	 0.450	 0.477	 0.652	 0.770	
-0.05	 -0.70	 0.389	 0.399	 0.587	 0.670	
-0.05	 -0.30	 0.244	 0.217	 0.365	 0.345	
-0.05	 -0.10	 0.140	 0.111	 0.177	 0.145	
-0.05	 -0.05	 0.106	 0.076	 0.120	 0.096	
-0.10	 -1.00	 0.639	 0.655	 0.815	 0.914	
-0.10	 -0.90	 0.620	 0.630	 0.798	 0.896	
-0.10	 -0.70	 0.548	 0.541	 0.742	 0.821	
-0.10	 -0.30	 0.347	 0.304	 0.516	 0.485	
-0.10	 -0.10	 0.187	 0.149	 0.273	 0.225	
-0.10	 -0.05	 0.131	 0.103	 0.177	 0.146	
-0.30	 -1.00	 0.899	 0.902	 0.951	 0.979	
-0.30	 -0.90	 0.883	 0.881	 0.951	 0.978	
-0.30	 -0.70	 0.840	 0.831	 0.943	 0.965	
-0.30	 -0.30	 0.643	 0.419	 0.845	 0.835	
-0.30	 -0.10	 0.344	 0.304	 0.522	 0.493	
-0.30	 -0.05	 0.243	 0.221	 0.359	 0.337	

T=250,	𝜹𝒊 = 𝟎. 𝟏, 𝒌 = 𝟑	 𝜽𝟏 = 𝟎. 𝟏		 𝜽𝟏 = 𝟏	

𝜸𝟏	 𝜸𝟐	 Fourier-KSS	 Fourier-Sollis	 Fourier-KSS	 Fourier-Sollis	
-0.05	 -1.00	 0.810	 0.940	 0.777	 0.989	
-0.05	 -0.90	 0.803	 0.934	 0.775	 0.983	
-0.05	 -0.70	 0.767	 0.897	 0.775	 0.972	
-0.05	 -0.30	 0.665	 0.730	 0.724	 0.849	
-0.05	 -0.10	 0.438	 0.424	 0.506	 0.517	
-0.05	 -0.05	 0.283	 0.267	 0.334	 0.313	
-0.10	 -1.00	 0.944	 0.993	 0.907	 0.999	
-0.10	 -0.90	 0.944	 0.993	 0.899	 0.998	
-0.10	 -0.70	 0.932	 0.984	 0.913	 0.996	
-0.10	 -0.30	 0.884	 0.921	 0.906	 0.968	
-0.10	 -0.10	 0.636	 0.628	 0.719	 0.721	
-0.10	 -0.05	 0.435	 0.421	 0.506	 0.509	
-0.30	 -1.00	 0.999	 1.000	 0.987	 0.999	
-0.30	 -0.90	 0.998	 1.000	 0.988	 0.999	
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Table	4.	Continue.	

-0.30	 -0.70	 0.998	 1.000	 0.991	 0.999	
-0.30	 -0.30	 0.994	 0.997	 0.993	 0.998	
-0.30	 -0.10	 0.879	 0.922	 0.909	 0.969	
-0.30	 -0.05	 0.663	 0.733	 0.723	 0.856	
	 	 	 	 	 	

	

If	Table	4.	generally	reviewed,	the	power	of	the	Fourier-Sollis	test	increases	with	the	number	of	samples	
and	gives	better	results	than	the	Fourier-KSS	test	in	terms	of	power	characteristics	under	the	assumption	
of	 asymmetric	 mean	 reversions.	 It	 is	 observed	 that	 the	 power	 of	 Fourier-Sollis	 test	 becomes	 more	
significant	 as	 the	difference	between	asymmetry	and	 transition	 rates	 increases.	 In	 case	of	 symmetrical	
reversions,	that	is	𝛾$ = 𝛾%,	the	Fourier-KSS	test	was	found	to	be	more	powerful	than	the	Fourier-Sollis	test.	
Because	 of	 first	 order	 Taylor	 transformation	with	 the	 variable	 in	𝑦!"$* ,	 the	 auxiliary	 regression	 of	 the	
AESTAR	model	became	more	convergent	than	the	auxiliary	regression	of	the	ESTAR	model.	In	the	light	of	
these	results,	Fourier-Sollis	test	is	indisputably	more	powerful	under	the	assumption	of	asymmetric	mean	
reversion.	

III.	Conclusions	

In	 this	 study,	 the	 powers	 of	 Fourier-Sollis	 and	 Fourier-KSS	 tests	 under	 symmetric	 and	 asymmetric	
reversions	were	compared.	Under	the	symmetrical	assumption,	it	was	observed	that	the	Fourier-Sollis	test	
was	close	to	the	Fourier-KSS	test	in	terms	of	power.	Under	the	asymmetric	assumption,	the	Fourier-Sollis	
test	was	found	to	be	stronger	than	the	Fourier-KSS	test.	In	this	case,	it	is	observed	that	Fourier-Sollis	test	
can	 be	 used	 as	 a	 alternative	 of	 Fourier-KSS	 test	 under	 structural	 break	 of	 asymmetric	 or	 symmetric	
reversions.	If	it	is	accepted	that	the	wave	structure	can	be	deviated	for	the	series	that	is	applied	Fourier	
transform,	as	an	example	the	symmetric	mean	reversion	in	the	data	generation	mechanism	can	convert	to	
asymmetric.	 In	 this	 case,	 the	use	 of	 Fourier-Sollis	 test,	which	 takes	 into	 account	 the	 asymmetric	mean	
reversion,	will	ensure	the	unit	root	structure	of	time	series	is	determined	much	more	accurately.		

The	developed	test	structure	has	been	found	to	be	useful	for	unit	root	detection	for	asymmetric	ESTAR	
structures	under	structural	break.	Especially	in	the	model	structure,	unlike	the	original	study,	deterministic	
terms	were	not	included.	Because	it	makes	no	sense	to	allow	deterministic	terms	in	the	difference	term	
under	these	conditions.	So,	if	there	is	an	expression	for	any	deterministic	term	in	the	redefined	difference	
equation,	 it	 is	a	property	left	over	from	the	remnants	of	the	Taylor	transformation.	The	solution	to	this	
problem	arising	from	residuals	is	to	increase	the	lag	degree	of	the	model.		
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