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Reactive Oxygen Species in Fibroblasts under Hyperglisemic 
Conditions

SUMMARY

Chronic wounds are one of the common and serious diabetic 
complications that also impose a significant financial burden on 
society. Since comprehensive treatment for chronic wounds has not 
yet been found, new treatment recommendations are needed. The 
beneficial effects of hydrogen sulfide (H2S) on wound healing have 
previously been demonstrated in healthy or diabetic animal models. 
H2S has also been found to accelerate wound closure in cells and 
animal models. H2S is beneficial in diabetic wound healing, but 
its effect on wound healing under diabetic conditions has not yet 
been elucidated. In this study, we investigated the effects of H2S 
and reactive oxygen species (ROS) on wound healing in fibroblasts 
under high glucose conditions. We used 2,3-bis-(2-methoxy- -nitro-
5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) and scratch 
migration assay to investigate fibroblast cell viability and wound 
healing migration. We showed that H2S enhanced wound healing 
in fibroblasts incubated with high glucose by increasing cell viability, 
proliferation, migration, and attenuating ROS. According to our 
results, exogenous H2S reduced oxidative stress during wound repair. 
In conclusion, H2S accelerated wound healing, which may be related 
to inhibiting oxidative stress.
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Hidrojen Sülfür Hiperglisemik Koşullar Altında Fibroblastlarda 
Reaktif Oksijen Türevlerini Azaltarak Yara İyileşmesini Destekler

ÖZ

Kronik yaralar, topluma ciddi mali yük getiren, yaygın ve ciddi diyabet 
komplikasyonlarından biridir. Kronik yaraların kapsamlı bir tedavisi 
henüz bulunamamıştır ve yeni tedavi önerilerine ihtiyaç vardır. 
Hidrojen sülfürün (H2S) yara iyileşmesi üzerindeki faydalı etkileri 
daha önce sağlıklı veya diyabetik hayvan modellerinde gösterilmiştir. 
H2S’nin ayrıca hücrelerde ve hayvan modellerinde yara kapanmasını 
hızlandırdığı da bulunmuştur. H2S’nin diyabetik yara iyileşmesinde 
faydalı olduğu gösterilmiştir ancak diyabetik koşullar altında yara 
iyileşmesi üzerindeki etkisi henüz açıklanmamıştır. Bu çalışmada; 
H2S ve reaktif oksijen türevlerinin (ROS) yüksek glukoz koşullarında 
fibroblasttaki yara iyileşmesi üzerindeki etkilerini araştırdık. 
Fibroblast hücre canlılığını ve yara iyileşmesi göçünü araştırmak 
için 2,3-bis-(2-metoksi--nitro-5-sülfofenil)-2H-tetrazolyum-5-
karboksanilid (XTT) ve “scratch migration assay” kullandık. H2S’nin 
yüksek glikozla inkübe edilmiş fibroblastlarda hücre canlılığını, 
çoğalmasını, göçünü artırarak ve ROS’ u zayıflatarak yara iyileşmesini 
arttırdığını gösterdik. Sonuçlarımıza göre eksojen H2S yara onarımı 
sırasında oksidatif stresi azalttı. Sonuç olarak H2S, oksidatif stresin 
inhibisyonu ile ilişkili olarak yara iyileşmesini hızlandırdı.

Anahtar Kelimeler: Yara iyileşmesi, fibroblast, yüksek glukoz, 
hidrojen sülfür
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INTRODUCTION

Wound healing is a complex pathophysiological 
process in diabetes. Impaired wound healing is one 
of the most serious diabetic complications, and effec-
tive treatment remains unknown. Several studies have 
reported that it benefits wound healing by improving 
angiogenesis, anti-inflammation and antioxidants in 
wound tissues (Zhang et al., 2014; Jeon et al., 2018; 
Yang et al., 2019). It was shown that diabetic rats with 
wounds showed inflammatory characteristics such 
as purulence and increased expression of TNF-α, 
reduced antioxidants and angiogenesis (Wang et al., 
2015). 

In recent years, research on wound healing has fo-
cused on gases that are formed endogenously. These 
gases are called gas transmitters because they can in-
fluence the functions of cells and tissues in picomolar 
quantities (Wang et al., 2004; Kolupaev et al., 2019). 
Hydrogen sulfide (H2S) is one of these gas transmit-
ters, which occurs endogenously in tissues and has a 
role as a regulatory molecule in wound healing. The 
first study showed an H2S-mediated improvement of 
impaired wound healing in diabetic and obese db/db 
mouse models (Fang et al., 2014). Goren et al. showed 
that stimulation of wound tissue by exogenous ap-
plication of H2S-releasing drugs improved overall 
wound closure rates in the diseased mice. H2S has 
been reported to accelerate gastric ulcer healing (Wal-
lace et al., 2007) and healing of burn wounds in the 
skin (Cai et al., 2007; Papapetropoulos et al., 2009). 
Papapetropoulos et al. found that topical administra-
tion of H2S improved the recovery from burn wounds 
in wild-type rats.

Oxidative stress is one of the main causes of 
wound healing impairment (Nathan et al., 1993). Re-
active oxygen species (ROS) arising from inflamma-
tory cells have vigorously participated in the patho-
genesis of chronic ulcers (Singh et al., 2005). It was 
shown that ROS causing oxidative stress aggravates 
wound in diabetes, therefore; antioxidant productions 
may improve wound healing and healing of foot ul-

cers in diabetes (Park et al., 2011). Furthermore, ROS 
activates cellular molecular signals to disturb angio-
genesis or cytokine secretion to delay wound healing 
(Zhang et al., 2014; Jeon et al., 2018). The ability of an-
tioxidant effect of H2S has been demonstrated in sev-
eral systems by many studies (Meng et al., 2015; Xie 
et al., 2016; Lin et al., 2018; Meng et al., 2018; Wang 
et al., 2018). It has been reported that H2S accelerated 
diabetic wound healing by inhibiting ROS production 
(Yang et al., 2019). Some studies indicated that H2S 
itself is not a potent antioxidant compared with oth-
er antioxidants (Kimura et al., 2004; Jha et al., 2008; 
Hamar et al., 2012) but H2S enhances the antioxi-
dant effect via elevating endogenous antioxidase such 
as superoxide dismutase (SOD) (Searcy et al., 1995; 
Sivarajah et al., 2009). Wang et al. reported that H2S 
treatment increased the activity of SOD, decreased 
malondialdehyde (MDA) content (Wang et al., 2018).

Endogenous H2S is produced from L-cysteine by 
catalysis of cystathionine beta-synthase (CBS) and 
cystathionine-gamma-lyase (CSE) (Wang, 2003). In-
hibition of CSE promotes endothelial cell dysfunction 
induced by hyperglycemia (Degterev et al., 2005) and 
reduced H2S levels in streptozotocin-induced diabetic 
rats (Jain et al., 2010). 

Some studies on animal models and cell cultures, 
like L929 fibroblast cells, indicated that H2S could 
promote wound healing. Fibroblasts play a crucial 
role in wound healing by producing collagen which 
is essential for tissue repair and remodeling. H2S has 
been proposed to enhance the migration and prolif-
eration of fibroblast cells, thereby potentially speed-
ing up the wound healing process (Fang et al., 2014). 
Moreover, it has been shown that significant improve-
ment in wound closure, an increase in the number of 
fibroblasts and inflammatory cells, and higher colla-
gen I and collagen III levels in hyaluronic acid-treated 
rats (Taskan et al., 2021). Diabetes-induced impaired 
migration and proliferation of keratinocytes and fi-
broblasts has been reported in animal models (Patel 
et al., 2019). It is also known that high glucose impairs 
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the proliferation and migration of human gingival fi-
broblasts (Buranasin et al.,2018).

The aim of this study is to investigate the role of 
H2S and ROS in wound healing under hyperglycemic 
(HG) conditions in fibroblasts. 

MATERIAL AND METHODS 

Cell culture 

L929 mouse fibroblast cell line (Republic of Tür-
kiye Ministry of Agriculture and Forestry, Institute 
of Şap; Mouse C3/An connective tissue, 92123004) 
was used in the experiments. Dulbecco’s Modifica-
tion Eagle’s Medium (DMEM) supplemented with 
10% fetal bovine serum (FBS), 2% L-glutamine and 
1% penicillin-streptomycin was used as the medium 
in all groups. Fibroblasts were incubated in DMEM 
medium containing 10 mM and 25 mM glucose for 48 
hours (Ueck et al., 2017). Control group was incubat-
ed with only DMEM medium which already contains 
5 mM glucose which approximates normal blood sug-
ar levels in vivo. Fibroblasts were incubated in DMEM 
containing 25 mM glucose for 48 hours, then H2S do-
nor sodium hydrogen sulfide (NaHS; 100 µM) and/
or ROS scavenger SOD (50 U/ml) and CSE enzyme 
inhibitor propargylglycine (PAG; 30 mM) was added 
for 30 min, in line with a previous study (Fang et al., 
2014). To investigate the effects of osmolarity, we used 
a mannitol treatment group with the same molarity 
as the HG group. In the mannitol group, fibroblasts 
were incubated for 48 hours in DMEM with 20 mM 
mannitol. 

XTT assay

 L929 cells were seeded into 96-well plates and in-
cubated with medium for 24 hours (5 % CO2, 37 °C) 
to form a confluent monolayer. After 24 hours of incu-
bation, the medium was aspirated from the surface of 
the cells.  Cells were incubated with 5, 10 and 25 mM 
glucose for 48 hours. After 48 hours of treatments, the 
medium was removed from wells. 100 µl of fresh me-
dium and 50 µl of the 2,3-bis-(2-methoxy-4-nitro-5-
sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) 

/Phenazine methosulfate (PMS) solution was added 
to each well and the plates were incubated for 4 hours 
in the incubator (Nüve EN 400 CO2 incubator; 5 % 
CO2, 37 °C). Then, an aliquot of 100 μl was transferred 
from each well into the corresponding well of a new 
96-well plate. The absorbances were measured with 
a microplate reader (Biotek Powerwave XS2) at 450 
nm (reference wavelength 630 nm). The results were 
normalized to the control group. In another group of 
experiments, cells were seeded into 96-well plates and 
incubated with 5 and 25 mM glucose for 48 hours, 
then 30 min with NaHS and/or SOD and PAG. After 
incubation, the medium was aspirated and XTT assay 
was performed as described above.

Scratch migration assay 

The migration of fibroblasts was analyzed by the 
scratch migration assay as previously described (Liang 
et al., 2007).  L929 cells were seeded in 24-well plates 
and incubated with DMEM at 37 °C and 5 % CO2 for 
24 to 48 hours to permit cell adhesion and the forma-
tion of a confluent monolayer. After 90% confluence 
was achieved, an artificial gap, so called “scratch”, ap-
proximately 0.2-0.4 mm in width, was created with a 
200 μL sterile pipette tip. The medium, along with any 
detached cells and debris, was immediately removed. 
Cells were incubated with 5 and 25 mM glucose for 
48 hours and then 30 min with NaHS and/or SOS 
and PAG. Images were taken by an inverted micro-
scope (Leica DM IL) equipped with a digital camera 
to follow cell migration and morphological changes 
of cells. Images were taken just after the “scratch” was 
created which was accepted as the initial wound area, 
and images were taken at the 24th and 48th hours of in-
cubation.  The area of the scratch and wound closure 
were measured by ImageJ 1.53e software (National 
Institute of Health). Wound closure was quantified as 
wound area relative to the initial wound area. 

Chemicals 

DMEM was purchased from Wisent Bioproducts 
(Quebec, Canada). FBS and trypsin-EDTA were pur-
chased from Cegrogen-Biotech (Germany). L-gluta-
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mine and penicillin-streptomycin were purchased 
from Biochrom (Cambridge, UK). XTT was pur-
chased from PanReac Applichem (Germany). PMS, 
glucose, mannitol, NaHS, SOD and PAG were pur-
chased from Sigma Aldrich (St Louis, USA). 

Statistical analysis 

Statistical analysis was performed with a one-way 
ANOVA post hoc Tukey test. Data were represented 
as mean ± standard error mean (SEM). P<0.05 was 
accepted as statistically significant. GraphPad Prism 
5.0 software was used for statistical analysis (San Di-
ego, USA). 

RESULTS AND DISCUSSION

Firstly, we examined the cytotoxic effect of in-
creasing concentration of glucose on L929 cells at 
48 hours. 10 mM glucose did not affect cell viability 
compared to control group which was incubated with 

5 mM glucose, but incubation with 25 mM glucose 
decreased cell viability after 48 hours compared to 
control group (Figure 1). 10 mM glucose is known as 
pre-diabetic as well as higher glucose concentration 
is considered as diabetic in in vivo studies (https://
www.sigmaaldrich.com/IT/en/technical documents/
technical-article/cell-culture-and-cell-analysis/mam-
malian-cell-culture/glucose). The incubation with 
glucose at 25 mM for 48 hours was chosen as the HG 
condition for further experiments to observe the ex-
aggerated responses. Control group was incubated 
with only DMEM medium which already contains 5 
mM glucose which approximates normal blood sugar 
levels in vivo. The cell viability in mannitol group was 
not different from that of the control group, which 
showed that the difference in HG group was not relat-
ed to hyperosmolarity. 

Figure 1. Effect of glucose incubation (10, 25 mM) and mannitol on L929 cell viability after 48 hours. Re-
sults were given as a percentage of control group (* P<0.05 significant compared to control group; n=5).

In the second part of our study, we examined cell 
viability and proliferation were assessed with NaHS, 
SOD and PAG in control group (5 mM glucose) and 
HG (25 mM glucose) conditions. H2S was adminis-
tered in the form of NaHS, which is well established 
as a reliable H2S donor. NaHS is a rapid-releasing H2S 
donor widely used in recent in vivo and in vitro H2S 
studies (Sivarajah et al., 2006; Cai et al., 2007; Papa-

petropoulos et al., 2009; Wang et al., 2010). In our re-
sults, NaHS, SOD and PAG did not change cell viabil-
ity in control group (incubation with 5 mM glucose, 
for 48 hours). In HG conditions (incubation with 
25 mM glucose, for 48 hours), PAG treatment did 
not alter the decrease in cell viability, whereas NaHS 
and SOD significantly increased cell viability (Fig-
ure 2). Liu et al. have demonstrated that exogenous 
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H2S significantly prevented cell death, decreased the 
generation of apoptotic markers, and suppressed mi-
tochondrial ROS production in rat aortic endothelial 
cells under HG conditions (Liu et al., 2016). More-
over, it was reported that NaHS treatment reduces 
HG-induced cytotoxicity, apoptosis, oxidative stress 
and inflammation in human umbilical vein endothe-
lial cells (HUVECs) (Fengxia et al., 2020). Increasing 
studies indicate that H2S executes various biological 
functions, such as reducing oxidative stress (Calvert 
et al., 2009; Vacek et al., 2010).  Both clinical and ex-

perimental studies show that hyperglycemia results 
in reduced antioxidants and elevated oxidative stress 
involved in the development of diabetes and its com-
plications (Grieve et al., 2004; Molavi et al., 2004). In 
parallel with previous studies, ROS scavenger SOD 
significantly increased cell viability under HG condi-
tions in the present study. Furthermore, the fact that 
the H2S synthesizing enzyme-CSE inhibitor PAG did 
not change the decreased cell viability confirms the 
effect of H2S on oxidative stress.

Figure 2. Effect of NaHS (100 µM), SOD (50 U/ml) and PAG (30 mM) on L929 cell viability in control 
group and HG conditions after 48 hours. Results were given as a percentage of control group (5 mM glucose). 

(*P<0.05 significant compared to control group, #P<0.05 significant compared to HG; n=5).

Finally, we examined the effects of H2S and/or 
SOD and PAG on wound closure in fibroblasts. In 
HG conditions (25 mM glucose), there is a signifi-
cant decrease in wound closure compared to control 
group (5 mM glucose) after 24 and 48 hours. NaHS or 
SOD treatment significantly increased wound closure 
compared to HG after 24 and 48 hours (Figure 3A, B). 
In parallel with our study, it was reported that NaHS 
promoted cell migration in both skin fibroblasts and 
human keratinocytes around the wound healing area 
(Mengting et al., 2019). It was also shown that NaHS 
accelerated wound healing in ob/ob mice and this ef-

fect of NaHS was glucose-independent, as it did not 
affect the glucose levels (Zhao et al., 2017). When we 
investigated the effects of NaHS and SOD combina-
tion, there was a significant further increase in wound 
closure in NaHS and SOD combination treatment 
compared to NaHS and SOD alone under HG after 
24 and 48 hours (Figure 3A, 3B). Over the past de-
cade, H2S has been discovered to improve skin wound 
healing in diabetic mice via antioxidants (Wang et al., 
2015; Zhao et al., 2017). Treatment with H2S in dia-
betic rats accelerated wound closure and increased the 
activity of SOD, decreased MDA content (Guoguang 
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et al., 2015). These findings suggest that H2S improves 
wound healing in diabetes by enhancing antioxidants. 
It was also reported that H2S increased SOD activity, 

enhanced haem oxygenase‐1 (HO‐1) protein expres-
sion, and finally alleviated oxidative stress injury in 
the skin (Wang et al., 2015). 

A     B  

Figure 3. Effect of NaHS (100 µM) and/or SOD (50 U/ml) and PAG (30 mM) treatments on wound heal-
ing of fibroblasts in HG for 24 (A) and 48 (B) hours after scratch assay. Wound closure was calculated as a 
percentage of the initial wound area. (*P<0.05 compared to control group; #P<0.05 significant compared to 

HG; n=6).

On the other hand, H2S synthesizing enzyme-CSE 
inhibitor PAG did not change the decreased wound 
closure in HG conditions (Figure 3A, B). CSE ap-
peared to be the most relevant H2S-producing enzyme 
in wound tissue (Goren et al., 2019). There are many 
studies stating that impairment in wound healing is 
associated with enzymes involved in H2S produc-
tion (Zhao et al., 2017; Liu et al., 2014; Degterev et 
al., 2005; Jain et al., 2010). Zhao et al. were reported 
that impaired diabetic wound healing is associated 
with reduced CSE expression. H2S improves diabet-
ic wound healing by restoring endothelial progenitor 
cell (EPC) function in type 2 diabetes. It has been 
reported that EPC functions of the db/+ mice were 
significantly reduced after in vitro PAG treatment or 
CSE silencing (Liu et al., 2014). Moreover, inhibition 
of CSE promotes endothelial cell dysfunction induced 
by hyperglycemia (Degterev et al., 2005) and reduc-
es H2S levels in streptozotocin-induced diabetic rats 
(Jain et al., 2010).

CONCLUSION 

H2S was suggested as one of the agents that have 
been found beneficial and may increase the migra-
tion and proliferation of fibroblasts. In our study, we 
showed that H2S increased wound healing by enhanc-
ing the viability, proliferation and migration of fibro-
blasts and attenuating oxidative stress under HG con-
ditions. The present study suggested that exogenous 
H2S attenuated oxidative stress during wound repair. 
In summary, H2S accelerated wound healing, which 
might be related to oxidative stress inhibition. This 
protective effect indicates that H2S may be a potential 
therapeutic compound for skin wound closure in the 
clinic. 
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