
PAPER DETAILS

TITLE: APPROXIMATE DYNAMIC PROGRAMMING FOR OPTIMAL SEARCH WITH AN

OBSTACLE

AUTHORS: Yasin GÖÇGÜN

PAGES: 89-104

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/664823

S.Ü. Müh. Bilim ve Tekn. Derg., c.7, s.1, ss. 89-104, 2019

Selcuk Univ. J. Eng. Sci. Tech., v.7, n.1, pp. 89-104, 2019

ISSN: 2147-9364 (Electronic)

DOI: 10.15317/Scitech.2019.184

APPROXIMATE DYNAMIC PROGRAMMING FOR OPTIMAL SEARCH WITH AN

OBSTACLE

Yasin GÖÇGÜN

Altınbaş University, Faculty of Engineering and Natural Sciences, Department of Industrial Engineering,

34217, İstanbul, Turkey

yasin.gocgun@altinbas.edu.tr

(Geliş/Received: 30.04.2018; Kabul/Accepted in Revised Form: 08.08.2018)

ABSTRACT: In this paper, we study a class of optimal search problems where the search region

includes a target and an obstacle, each of which has some shape. The search region is divided into

small grid cells and the searcher examines one of those cells at each time period with the objective of

finding the target with minimum expected cost. The searcher may either take an action that is quick

but risky, or another one that is slow but safe, and incurs different cost for these actions. We formulate

these problems as Markov Decision Processes (MDPs), but because of the intractability of the state

space, we approximately solve the MDPs using an Approximate Dynamic Programming (ADP)

technique and compare its performance against heuristic decision rules. Our numerical experiments

reveal that the ADP technique outperforms heuristics on majority of problem instances. Specifically,

the ADP technique performs better than the best heuristic policy in 17 out of 24 problem sets. The

percent improvement in those 17 problem sets is on average 7.3%.

Key Words: Approximate dynamic programming, Markov decision processes, Optimal search

Engelli Optimal Arama için Yaklaşımsal Dinamik Programlama

ÖZ: Bu makalede her biri bir şekle sahip olan, arama bölgesi hedef ve engel içeren optimal arama

problemlerini çalışmaktayız. Arama bölgesi küçük grid hücrelerine bölünmüştür ve araştırmacı her bir

zaman peryodunda minimum maliyetle hedefi bulma amacıyla bu hücrelerden birini inceler.

Araştırmacı hızlı ama riskli eylemi veya yavaş fakat güvenilir olanı seçebilir ve bu eylemler için farklı

ücret öder. Bu problemleri Markov Karar Süreçleri (MKS) ile formüle etmekteyiz, fakat durum

uzayının çetinliğinden dolayı MKS’leri bir Yaklaşımsal Dinamik Programlama (YDP) tekniği

kullanarak yaklaşık olarak çözmekteyiz ve onun performansını sezgisel karar kurallarıyla

karşılaştırmaktayız. Nümerik deneylerimiz problem örneklerinin çoğunda YDP tekniğinin sezgisel

yöntemlerden üstün olduğunu ortaya çıkarmıştır. Spesifik olarak YDP tekniği 24 problem kümesinden

17’sinde en iyi sezgisel yöntemden daha iyi sonuç vermektedir. Bu 17 problem kümesindeki yüzde

gelişme ortalama %7,3’tür.

Anahtar Kelimeler: Markov karar süreçleri, Optimal arama, Yaklaşımsal dinamik programlama

INTRODUCTION

In many search problems, a region of interest is examined to find a stationary or moving target,

whose location is only known probabilistically. Optimality criteria typically include maximizing the

probability of detecting the target subject to a constraint on search effort, or minimizing the expected

cost until locating the target. Optimal search problems arise in diverse settings such as mobile robot

missions (Derr and Manic, 2009), visual search and detection (Najemnik and Geisler, 2008), and event

90 Y. GÖÇGÜN

detection in sensor network (Wettergren, 2008). For example, large areas of the ocean may be searched

in order to detect an enemy submarine in military applications, or to find someone lost at sea in search

and rescue operations.

Our work is motivated by a much smaller-scale search that occurs during the course of minimally

invasive surgery (MIS). While pre-operative images are certainly helpful, surgeons performing MIS

still do not know exactly where certain critical structures lie at the start of the actual operation. Since

real-time imaging is infeasible in many cases, surgeons must effectively use their surgical instruments

to search through tissues and past other structures to locate a target organ of interest (e.g., the kidney)

safely and efficiently.

Towards that end, we consider a class of optimal search problems where the search region

contains a stationary target and a stationary obstacle, whose locations are known through a joint

probability distribution. By “target" we mean the object that when found, ends the search problem

and stream of costs. Note that while we use the term “obstacle”, we do not mean that it is necessarily

something to be avoided. In fact, it may serve as a landmark towards finding the target, and therefore

search strategies may try to find the obstacle before the target. For example, in minimally-invasive

kidney operations, surgeons typically first try to find the ureter, which they can then follow along

until it connects to the kidney. We also consider that the two objects may have shapes and occupy

more than one cell of the search grid (as is the case with organs in MIS). We assume that upon finding

one cell containing part of the object, the searcher knows the precise location of the entire object. At

each step, the searcher chooses which cell to examine next and which of two actions to take on that

cell: a quick-but-risky or a slow-but-safe action. In the context of MIS, the analogy is a choice between

quickly cutting through the tissue that obstructs the surgeon’s view (risking cutting a critical structure

just behind the tissue), or slowly peeling away layers of tissue to safely explore whether the structure

is there or not. In the remainder of the paper, we shall refer to these two choices as “cut” or “explore.”

While our motivating example is MIS and we adopt some language particular to that setting, we note

that the tradeoffs involved apply to other search problems where views are obstructed, paths must be

cleared to find objects, and there is a concern about damaging them along the way. For example, this

applies to archeological excavations as well.

We aim to determine an optimal search policy; that is, the sequence of cells to be visited, along

with the search action to choose at each of those cells, so as to minimize the total expected cost until

locating the target. We formulate this as a Markov Decision Process (MDP), a mathematical

framework used to model systems that evolve probabilistically over time. MDPs have been applied to

diverse problems in fields such as manufacturing, healthcare, and logistics. In our problem, exact

solutions for the underlying MDP model are computationally intractable. Therefore, we use

Approximate Dynamic Programming (ADP) techniques to approximately solve our MDP model. We

will compare the performance of ADP policies with heuristics under various instances of input

parameters.

Depending on the nature of a search problem, different search algorithms can be used. Example of

search algorithms include suboptimal control algorithms (Shechter et al., 2015), particle swarm

optimization algorithms (Derr and Manic, 2009), and Bayesian algorithms (Chung and Burdick, 2007).

In this paper, we make the following contributions:

• Differing from the related literature, we introduce a class of optimal search problems where the

search region contains both a target and an obstacle. Additionally, unlike the objects studied in the

search literature, each of target and obstacle we consider has some shape.

• We provide an MDP model for this class of problems.

• We utilize an ADP-based approximation technique for approximately solving the underlying

MDP. In particular, we approximately solve the search problem using direct-search based ADP, which

is a relatively new technique for optimal search problems.

• We compare the resulting ADP policy with easy-to-use heuristics under diverse scenarios.

Approximate Dynamic Programming For Optimal Search With An Obstacle 91

• Our numerical experiments reveal that the ADP policy outperforms heuristics on majority of

problem instances. Hence, we demonstrate that direct-search based ADP is a viable technique for

optimal search problems that have target and obstacle.

The paper is organized as follows. In Section 2, we provide the relevant literature. Section 3

includes the description of the search problem and the MDP model. The details of the ADP technique

used to solve our MDP model are given in Section 4. We provide numerical results in Section 5.

Finally Section 6 includes discussion of the numerical experiments and provides concluding remarks.

LITERATURE REVIEW

 Optimal search problems have been studied for several decades (Benkoski et al., 1991; Dobbie,

1968; Haley and Stone, 1980; Stone, 1975; Washburn, 2002). The work on these problems can be mainly

categorized as searches for a moving target (Dell et al., 1996; Eagle and Yee, 1990; Singh and

Krishnamurthy, 2003; Botea et al., 2013) or for a stationary target (Singh and Krishnamurthy, 2003;

Botea et al., 2013; Chung, 2010; Lossner and Wegener, 1982; Ross, 1969; Snider, 2011; Kulich et al.,

2014). Since we consider a stationary obstacle and target, we discuss here more the latter set of papers.

Ross (1969) studies a search problem where a reward is received upon finding the target and the

searcher may decide to stop searching if the reward does not justify the search costs. The author

characterizes the form of the optimal strategy for this problem. Wegener (1980) considers features

such as overlook probabilities that depend on the number of times a particular cell is searched. The

objective is to minimize the expected time of the search. Lossner and Wegener (1982) study a search

problem where a switching cost is incurred when going from searching one cell to another and

provide conditions under which optimal strategies exist. Chung and Burdick (2007) study a search

problem that aims to minimize the time until a decision is made regarding the target’s location. The

authors consider the likelihood that the target does not lie in any of the search cells, and propose a

Bayesian framework which aims to improve the decision. Chung (2010) studies probabilistic search for

a stationary target in a discretized search region considering imperfect detections. Snider (2011)

studies an optimal search problem where a target is hidden at a location with a known distribution

and a searcher tries to find it using another distribution, with the objective of minimizing the average

number of steps to locate the target. Kulich et al. (2014) study the problem of finding an optimal path

in order to find a stationary object located in an environment whose map is not a a-priory known. The

authors present several strategies for this problem and statistically evaluate their performance for

search in comparison to exploration. Shechter et al. (2015) consider the search for a single stationary

target. They consider both unconstrained and constrained versions of the search problem. In the

unconstrained search, the searcher is allowed to visit cells in any order, whereas the constrained

search requires that the searcher visit adjacent cells. The authors provide structural results for the

unconstrained search problem and approximately solve reasonably-sized problems of the constrained

search using two suboptimal control algorithms.

Furthermore, Nitinavarat and Veerevalli (2017) develop an adaptive search policy for the problem

of universal search and stop. The authors show that the knowledge of the target distribution “only

useful for improving the reliability for detecting that the target is missing”. El-Hadidy and El-Bagoury

(2015) work on a search problem where a single searcher tries to detect a three-dimensional randomly

located target in a known zone, with the objective of minimizing the expected value of the time

required to detect the target. Gabal and El-Hadidy (2015) study a search problem where a single

searcher searches for a randomly located target in a bounded known region. The authors aim to

minimize the expected value of the time for detecting the target. El Hadidy (2016) studies a search

problem where n searchers try to detect an n-dimensional randomly moving target. The author shows

that there is a fuzzy optimal search plan that minimizes the expected value of the first meeting time.

92 Y. GÖÇGÜN

The search literature also includes the application of approximation methods for dynamic

programming formulations of optimal search problems. Zhao et al. (2008) study decentralized

Bayesian-search problems where multiple autonomous agents search unknown number of targets.

The authors formulate these problems as a decentralized optimal control problem using dynamic

programming, and they propose a policy iteration algorithm for approximately solving these types of

problems.

Our work differs from the search literature in the following aspects. We study a class of search

problems with objects having shapes and consider their joint uncertainty. While many papers in the

search literature discuss structural properties of the optimal solution, our problem is analytically

intractable, and therefore we focus on the performance of suboptimal policies obtained through ADP

methods. Our ADP approach is essentially a one-step lookahead method, which is a well known and

standard technique for dealing with large state space MDPs (Bertsekas and Tsitsiklis, 1996). However,

instead of approximating the cost-to-go through a simple greedy heuristic, we consider a more

rigorous approach to approximation based on ADP methodologies. By using basis functions tuned

offline to approximate cost-to-go functions, the ADP approach also offers considerable run-time

advantages over traditional lookahead approaches, which is critical in settings like MIS.

PROBLEM DESCRIPTION AND MATHEMATICAL FORMULATION

 We consider the following class of optimal search problems.

• The search region is discretized into N cells. Without loss of generality, we assume our search

takes place over a two dimensional grid.

• There is a stationary target and a stationary obstacle, both of which have some known shape

(i.e., they can occupy multiple cells in the search region). If any part of the target (obstacle) is found in

a particular cell, then the cell locations of the other parts of the target (obstacle) are known with

certainty.

• The initial locations of the target and the obstacle are known probabilistically. We indicate a

joint probability distribution of a representative cell for the target and obstacle, since knowing where

this marker cell is resolves the location uncertainty of the other parts of that object.

• The target/obstacle is detected with certainty when the searcher examines a cell containing it.

• At each step of the search, the searcher makes two types of actions: 1) which cell to visit next,

and 2) which type of search action to choose on the cell visited: a slow but safe exploring or a quick

but risky cutting of the cell (i.e., explore or cut).

• The following cost parameters are considered:

(a)
T

Hc : cost of hitting the target

(b)
O

Hc : cost of hitting the obstacle

(c)
Ec : cost of exploring a cell

Note that the first two costs are incurred only if the cut action is taken on a cell containing the

target (obstacle), while the third cost is a fixed cost of choosing to safely explore. If the target is located

at any step, the problem ends. Otherwise, the joint probability distribution of the representative target

and obstacle cells gets updated appropriately (i.e., via Bayes’ rule). The objective of the search is then

to determine an optimal sequence of cells to be visited, along with the action to choose on each cell,

which minimizes the expected cost until locating the target.

We next provide an MDP model for this class of search problems.

The MDP Model

Markov Decision Process (MDP), also known as stochastic dynamic programming, is a

mathematical framework used to model systems that evolve probabilistically over time. An MDP

consists of the following components:

Approximate Dynamic Programming For Optimal Search With An Obstacle 93

 Stage: It consists of time periods through which the system evolves.

• State: States capture the key features of the system at various time-points.

• Action: One of the feasible actions is chosen at each state.

• Probabilistic state transitions: An action chosen at each state makes the process

probabilistically evolve to a new state.

• Reward/cost: A reward/cost is associated with each state-action pair.

The objective of an MDP is to compute an action in each state so as to maximize expected net

reward (or minimize expected cost). MDPs for small-sized problems are optimally solved whereas for

large-sized problems, approximate dynamic programming (ADP) techniques are used to obtain

approximate solutions.

In order to efficiently express the components of our MDP model when considering objects with

shape, we compute the probability of an object being in a particular cell in terms of the probability

distribution of a representative cell of that object. Specifically, a particular cell of the obstacle is

marked
1O and a specific cell of the target is marked

1T . We assume that the rest of cells of each object

are completely known upon finding one of its components and therefore it is sufficient to represent

states in terms of the joint probability distribution of the marker cells for obstacle and target,

respectively. Without loss of generality, we will refer to the example of an “L" shaped target and

obstacle in Figure 1 throughout rest of the section to explain various aspects of the MDP components.

Random variables
1O ,

2O , 3O , and
1T ,

2T , and 3T are used to represent the locations of the cell

components of the obstacle and the target, respectively. For specific locations of the objects given in

Figure 1, the values of
1O ,

2O , 3O are 2, 1, and 7, respectively, and the values of
1T ,

2T , 3T are 35, 34,

and 40, respectively. Based on the above discussion, we assume that we can know the entire location

of the obstacle and the target through representative cells
1O and

1T , respectively.

State Space

The state space of our MDP model takes the following form:

,N,j=,N,,i=,s=pij 11

 where ijp is probability that iO =1
 and jT =1

, Ni ,1,= , and Nj ,1,= .

The relationship between the search space and the entries of the probability matrix (hereafter to be

called the “ P matrix") is illustrated in figures 1 and 2. Here the search region consists of 48=N

(6*8) cells and entry 2,35p would indicate the a priori probability that 2=1O and 35=1T .

94 Y. GÖÇGÜN

Figure 1. Search space

Figure 2. The Probability matrix

Action Space

The action space takes the following form:

),,aa=(a 21

 where kAa 1 is the location of the cell to be searched (},{1, NAk is the set of feasible cells

that can be searched at step k (i.e., in our case, the cells adjacent to those already searched)), and

},{2 CEa is the action chosen for the cell to be searched (E and C stand for “explore" and “cut",

respectively.).

Probability Updates

 After searching a cell, say, i , at the current step, the process moves to a new state, which requires

the update of the entries of the P matrix. Depending on whether an object is found in cell i , the

probability updates will be different, which is explained next.

Case 1: Finding nothing in the cell: As an example, suppose cell 28 is searched and nothing is found

there. Then we know that 1O , 2O , and 3O are not there, which equivalently means that 1O cannot be

in cells 28, 29, or 23 by its geometry. (Note that, since we update the P matrix by considering only

1O , we zero out only 23rd , 28th, and 29th rows and columns. For instance, we do not zero out rows and

Approximate Dynamic Programming For Optimal Search With An Obstacle 95

columns corresponding to cells 22, 27, and 33 since
1O can still be in one of those cells. In particular,

while cell 28 is empty, the obstacle can be found in cells 32,33, and 38, or in cells 21, 22, and 27, or in

cells 26, 27, and 32). The same holds for
1T . Therefore, as suggested in Figure 3, we perform the

Bayesian update of the P matrix by zeroing out the appropriate rows and columns, and

renormalizing the remaining probabilities. We can easily adapt the updating method to consider the

geometry of any other shape.

Figure 3. The view of the the probability matrix when no object is found.

Case 2: Finding the obstacle: As discussed, finding any part of the obstacle is equivalent to finding

1O in its respective cell. Suppose the obstacle found is situated as shown. Since it becomes known that

1O is in cell 28, we first update the P matrix by zeroing out all other rows except for row 28.

Furthermore, by the geometry of T, if O takes up cells 27, 28, 33, then
1T cannot be in those cells nor

cells 22, 23, 29, nor 34, and we put zeroes in the corresponding columns for
1T . Note that

1T cannot be

in cell 34 since we know in this case that the target would have to occupy cells 34, 33, and 39, which is

impossible as cell 33 is occupied by the obstacle. Finally, we renormalize the remaining probabilities in

row 28 to update the P matrix.

Figure 4. The view of the search space and the probability matrix when the obstacle is found

96 Y. GÖÇGÜN

Case 3: Finding the target: As stated earlier, when any component of the target is detected in cell i ,

the search problem ends. In addition, when the exact location of the target is known but not detected

through the “cut" or “explore" action, the problem still ends.

Immediate Costs

At any step of the search, an immediate cost is incurred upon choosing a cell to be searched along

with the action to be performed on the selected cell. This cost equals the fixed exploration cost for the

“explore" action, whereas it equals the expected cost of hitting an object on the selected cell for the

“cut" action.

The Cost-to-Go Function

The cost-to-go function for a given state s is expressed as follows:

)}},i))V(sP(Ti)P(O(

)=i)V(sP(O)=i)V(sP(O)=i)V(sP(OO
H

i)cP(OT
H

i)c),P(Ti))V(sP(O

i)P(T()=i)V(sP(O)=i)V(sP(O)=i)V(sP(O
E

{c{

k
Ai

V(s)=

41

3
3

2
2

1
1

4

13
3

2
2

1
1

minmin

 (1)

where
1s is the new state upon finding

1O in cell i (obtained using the probability updates described

earlier),
2s is the new state upon finding

2O in cell i ,
3s is the new state upon finding 3O in cell i ,

and
4s is the new state upon finding no object in cell i . Note that by the optimality equations,

conditional on visiting a particular cell, we can easily determine the optimal action of “cut" or

“explore" because both actions have the same expected cost to go thereafter. However, it is the choice

of which cell to visit next that greatly complicates things.

Our state space consists of all probability maps that could result after different sequences of cell

visits, which makes exact solution with traditional MDP algorithms intractable for even moderately

sized grids. Instead, we approximately solve the MDP using ADP techniques.

APPROXIMATE DYNAMIC PROGRAMMING

ADP has been widely used to deal with MDP’s curse of dimensionality in diverse fields such as

manufacturing, construction, healthcare, and revenue management (Powell, 2007). These techniques

are classified as linear programming (LP)-based ADPs and simulation-based ADPs. LP-based ADPs

start with a linear program whose optimal solution equals the optimal value function in Bellman’s

equations of the underlying MDP (in our problem, optimal value function corresponds to V(s) of Eq.

(1)). Because of an inordinate number of variables and constraints, the resulting LP is approximately

solved using techniques such as column generation and constraint sampling (Adelman, 2003;

Adelman, 2004; De Farias and Roy, 2003). Simulation-based ADPs differ from LP-based ADPs in that

they employ simulation models such as statistical sampling and reinforcement learning methods for

estimating the value functions (Bertsekas and Tsitsiklis, 1996; Chang et al., 2007; Sutton and Barto,

1998).

 In both LP and simulation-based approaches, a core concept in ADP is the approximation of the

value function through a combination of basis functions. The intuition behind basis functions are that

they represent some essential features of the state that may be predictive of the value of being in that

state (Bertsekas and Tsitsiklis, 1996). One of the common ways of approximating the value function

through basis functions is linear approximation, which takes the following form:

(s),ΦrV(s) kk

K

k=

1

 (2)

Approximate Dynamic Programming For Optimal Search With An Obstacle 97

where kr for Kk ,1,= are tuning parameters and)(sk for Kk ,1,= are basis functions.

After the value function is approximated, the approximation parameters are tuned iteratively to

obtain an ADP policy. More specifically, ADP techniques aim to find the optimal parameter vector

that minimizes a certain performance metric such as the sum of squared differences between the

approximate cost-to-go function and the estimated cost-to-go function over sampled states. The

resulting optimization problem is typically solved using regression-based techniques (Bertsekas and

Tsitsiklis, 1996; Powell, 2007); however, we apply direct search, an approach that tunes the ADP

parameters by solving an optimization problem that aims to maximize the performance of the policy

resulting from those parameters (Maxwell et al., 2013; Shechter et al., 2015). The ADP policy is then

obtained using the approximate value functions.

Retrieving the ADP Policy from the Approximate Value Function

After the parameter tuning phase is performed and hence the approximate value of a given state is

available (i.e., the approximate value of V(s) for a state s) due to having final values of rk’s in Eq. (2),

the ADP policy is retrieved by computing a decision vector (i.e.,),(21 aa) for any desired state of the

system. That decision vector is myopic with respect to value function approximation of our MDP.

Mathematically, the decision retrieval problem for a particular state s of our MDP model is expressed

as follows:

)}},(sVi))P(Ti)P(O()(sV=i)P(O

)(sV=i)P(O)(sV=i)P(Oi)cP(Oi)c),P(T(sVi))P(O

i)P(T()(sV=i)P(O)(sV=i)P(O)(sV=i)P(O{c{

O

H

T

H

E

k
Ai

43

3

2

2

1

1

4

3

3

2

2

1

1

~
1

~

~~~

1
~~~

minmin

 (3)

where)(
~ isV for ,41,= i is the approximate value of state

is .

Note that the structure of our problem enables us to calculate the expected cost of the search

exactly, owing to the fact that state transitions of our MDP model are deterministic. We therefore do

not need to evaluate policies using simulation as in simulation-based ADPs. In this sense, our way of

implementing ADP differs from both simulation-based ADPs and LP-based ADPs.

We next discuss the details about basis functions and the parameter tuning method we chose for

solving the MDP model introduced earlier.

Basis Functions

While basis functions can take on a wide variety of forms and calculations, based on our

motivating scenario (MIS), we consider easy-to-calculate basis functions, which may be better suited

to real-time decision making. We experimented with several different forms of the basis function, and

settled on the following one to test extensively in numerical experiments.

 Component-based Basis Functions: Each basis function equals the probability that any

component of the target or obstacle is located at a distinct cell. These basis functions have the

following form.

(s),(s)=pΦ kk

 where)(spk is)(kOkTP at state s . In other words, to each cell there is a corresponding

basis function that indicates the probability of finding any part of the obstacle or target there. Using

these basis functions, we have the following approximation for)(sV :

(s).pr(s)=V kk

N

k=

1

~

98 Y. GÖÇGÜN

Direct Search

We tune parameters using direct search, an approach described in the ADP literature (Adelman,

2004). Whereas regression-based techniques seek good approximations to the value function, direct

search focuses on the ultimate goal of finding good policies. In other words, it tackles an optimization

problem where the variables consist of feasible r ’s and the objective function value is the expected

cost of the policy induced by the corresponding parameter vector. The resulting optimization problem

takes the following form:

))],(s,πc(sE[trt

T

t=
NRr

 0

min (4)

 where T is a random variable denoting the final step of the search, ts is the state at step t of the

search,
r is the policy obtained by the parameter vector r ,)(tr s is the action dictated by the

policy
r in the state at stage t , and))(,(trt ssc is immediate cost incurred at step t as a result of

choosing)(tr s . Here,
r is obtained by solving the aforementioned decision retrieval problem via

the parameter vector r used to approximate the value function for each possible state visited during

the search. The objective function in Eq. (4) is the expected cost of the policy
r . With the

implementation of direct search, we obtain the values of rk’s in Eq. (2) and thus have the approximate

value of a given state.

We employ Simulated Annealing (SA) as a method for seeking a vector r that solves the

optimization problem of Eq. (1). In other words, we heuristicallly solve this optimization problem

using SA and hence obtain good but not optimal solutions for the r vector. The main reason for

choosing SA over other heuristic algorithms is its ability to find high-quality solutions quickly (Suman

and Kumar, 2006).

Simulated Annealing for Direct Search

SA is one of the efficient heuristic algorithms used to solve global optimization problems (Suman

and Kumar, 2006). Its features were inspired from an annealing process in which a material is cooled

slowly to alter its properties such as strength and hardness. Starting from an initial temperature, the

annealing process cools the material slowly by periodically reducing the temperature, with the

objective of minimizing its energy level (Suman and Kumar, 2006).

At a given feasible solution, the SA algorithm generates a new feasible solution using a

neighbourhood scheme. It accepts the new feasible solution when its objective function value is better

than that of the current solution; otherwise, the new worse solution is accepted with a probability

which is decreasing in the absolute difference between the values of the current and new solution, and

increasing in the current temperature. To implement this, a uniform [0,1] random number is

generated, and if it is less than the following term, the current solution is replaced by the new

solution:

,T

E

e

 where E is the absolute difference between the values of the new and current solution, and T is

the current temperature.

The key feature of SA is that it does not get stuck in local minima because of its ability to visit

worse solutions, and therefore has the potential to reach a global minima. After a certain number of

iterations, the temperature of the SA algorithm is periodically decreased in order to lower the

probability of accepting a worse solution. The algorithm stops after a certain number of iterations or

after a stopping criteria is met.

Approximate Dynamic Programming For Optimal Search With An Obstacle 99

The features of our SA algorithm for solving the optimization problem in direct search are listed

below.

• Initial Solution: Each component of the vector r is set to a Uniform][0,2 N random number.

• Neighbourhood Scheme: At each iteration, a new solution is generated by perturbing each

component of a randomly chosen fraction of r with a random quantity using a Uniform][0, N

distribution. The fraction value is fixed at 0.75.

• Temperature Schedule: After every m iterations, temperature T is set to)(1 T , where

(0,1) .

• Parameter Values: Number of iterations K , m , , and initial temperature are set to 500, 10,

0.1, and 1, respectively.

A Pseudo-code for Direct-search based ADP

The pseudo code for our ADP algorithm is given below.

Step 1. Come up with basis functions for the value function approximation.

Step 1.1. Determine the number of basis functions and hence the size of the parameter vector r

(referring to Eq. (2)).

Step 2. Apply direct search for tuning parameter vector r.

Step 2.1. Solve the optimization problem in Eq. (4) heuristically using SA algorithm.

Step 2.1.1. At each step of SA, determine a parameter vector r using the neighborhood

scheme.

Step 2.1.2. Evaluate the objective function in Eq. (4) using the current solution (i.e., the

parameter vector r determined in Step 2.1.1.)

Step 2.1.3. Revise the current solution by either accepting the worse solution or changing

it with a better solution. Go to Step 2.1.2 until the SA algorithm ends.

Step 3. Retrieve the ADP Policy from the approximate value function

Step 3.1. Solve the optimization problem in Eq. (3) to obtain a decision vector for any desired

state of the system.

NUMERICAL EXPERIMENTS

We studied the search problem on a two-dimensional grid. Problem instances were generated for

a variety of cases determined by the shapes and the location distributions of the objects. Specifically,

we considered two different cases based on the shapes of the objects: 1) Unit-shape case, in which each

of the objects occupies a single cell, and 2) L-shape case, in which each of the objects occupies three

cells (as shown in Figure 1). The location distributions of both of the objects were determined using a

discretized bivariate Gaussian distribution. We followed a two-step approach for constructing the

joint probability distribution of 1O and 1T . First we considered possible locations of 1O in the search

region, and then considered possible locations of 1T conditioned on each location of 1O . The resulting

values for)(1OP and)|(11 OTP were then used to construct the P matrix describing)(11 TOP .

The location distribution of 1T can then be obtained through the marginal distribution of the P

matrix. Furthermore, we also considered the rigid connection case where upon finding the obstacle in

the search region, the exact location of the target is known. In this rigid case, finding the location of 1O

or 1T resolves the uncertainty of the other in that 1T is located exactly at some fixed offset from 1O

(e.g., 3 to the right and 3 up).

100 Y.

GÖÇGÜN

The size of the search region was determined based on different levels of the variance of the

location distributions so as to provide sufficient coverage of the possible object locations. We

considered a 13*13 search region, which can be regarded as a region for a reasonably-sized problem.

The covariance of the Gaussian distribution for the obstacle was set to the identity matrix I, which

means that equals 1. The covariance of the Gaussian distribution for the target conditional on the

location of the obstacle was set to I0.25 and 0, corresponding to two different cases: the scaled case

(i.e., the variance for the conditional target distribution)|(11 OTP is scaled) and the rigid case. For each

level of standard deviation, we generated two different cases: 1) complete overlap, in which the

location distributions of the objects overlap each other (i.e., both objects have the same expected

location); 2) partial overlap, in which there is a partial overlap between the location distributions of

the objects (see Figure 5). These cases were constructed through different considerations of the

distance between the mean locations of the objects. As an example, the complete overlap corresponds

to an offset of (0,0) for the expected location of
1T relative to the expected location of

1O , while the

partial overlap case uses an offset of (3,3).

We used different levels for the cost parameters in order to see their effects on the performance of

various decision rules. Specifically, for each combination of standard deviation, problem size, and

offset, we generated three problem sets for each of the Unit-shape cases and the L-shape cases by

varying the hitting costs of the target and the obstacle. Finally, the exploration cost of a cell was fixed

at 1.

In implementing our SA algorithm, we used multiple replications. Specifically, the number of

replications was set to 5 for each problem set. This means that the SA algorithm starts with a distinct

vector of r at each replication. The best value obtained after running SA with five replications was

reported as the expected cost of the ADP policy.

Figure 5. The depiction of the search region for the partial overlap case. The cocentric circles represent

contour lines of the bivariate Gaussian distribution for the obstacle and the target, respectively.

Heuristic Decision Rules for Comparison

We compared the performance of the ADP policy against the following two heuristics:

MinProb: This policy chooses at each step of the search the cell with the lowest probability that an

object (i.e., a target or an obstacle) is located therein, and then chooses the cut or explore action

according to the minimum of the exploration cost and the expected cost of hitting an object for that

cell. Note that when the cost of hitting the target and the obstacle are equal, this policy is a greedy

policy in the sense of choosing the action which yields the smallest immediate cost.

Approximate Dynamic Programming For Optimal Search With An Obstacle

101

MaxProb: At each step of the search, MaxProb chooses the cell with the highest probability that an

object (i.e., a target or an obstacle) is located therein. Therefore, this heuristic may be considered

greedy in the sense of trying to locate an object as quickly as possible. After choosing the cell to

examine, the MaxProb policy chooses the action (“cut" or “explore") on the chosen cell according to

whichever yields the smallest immediate cost.

Results

Computational results for the different cases are reported in Tables 1-4. Each table lists the

percentage improvement obtained by the ADP policy over the best of the greedy policies for each of

the problem sets. As can be seen from all of the tables, the Maxprob heuristic performs much better

than the Minprob heuristic in every case. Therefore, the final column of each table represents the

percent improvement of the ADP policy over the Maxprob heuristic.

We begin by giving the results for the rigid case (Tables 1 and 2). These results reveal that the

ADP policy outperforms MaxProb, the best greedy heuristic, in most of the problem sets in the L-

shape case (Table 2), whereas it generally performs better than MaxProb in the Unit-shape case (Table

1). The average improvements over MaxProb are about 5% and 5.8% for the Unit-shape rigid case and

the L-shape rigid case, respectively. On the other hand, the ADP policy outperforms MaxProb in the

L-shape scaled case, while it performs roughly the same as MaxProb in the Unit-shape scaled case

(Tables 3 and 4). In particular, the ADP policy performs on average 6.3% and 0.4% better than

MaxProb in the L-shape scaled case and the Unit-shape scaled case, respectively. Finally, note that the

maximum improvement over MaxProb is about 17% (see Tables 1 and 2).

Table 1. The results for the Unit-shape rigid case.

 Offset T

Hc
O

Hc MinProb MaxProb ADP % Imprv.

1 50 150 17.62 6.16 5.61 8.93

100 100 18.87 6.54 6.18 5.5

150 50 18.91 6.81 5.64 17.18

2 50 150 16.45 6.37 6.42 -0.78

100 100 18.87 6.76 7.2 -6.51

150 50 20.07 7.05 6.66 5.53

Table 2. The results for the L-shape rigid case.

Offset T

Hc
O

Hc MinProb MaxProb ADP % Imprv.

1 50 150 17.62 4.33 4.35 -0.46

100 100 18.87 4.71 4.64 1.49

150 50 18.91 4.94 4.3 12.96

2 50 150 16.41 4.58 4.55 0.66

100 100 18.76 4.94 4.79 3.04

150 50 19.9 5.21 4.32 17.08

The expected costs of the search for the ADP policy and MaxProb are affected by the shapes of the

objects as well as the uncertainty of the location of the target. In particular, the expected costs of the

search for the ADP policy and MaxProb are higher in the Unit-shape case than in the L-shape case for

a fixed type of location distributions (Table 1 versus Table 2, and Table 3 versus Table 4). While the

larger objects (e.g., L-shape vs. Unit-shape) have more surface area that might be accidentally

102 Y.

GÖÇGÜN

damaged, they also eliminate more cells from the probability matrix when nothing is found. This

advantage in the uncertainty reduction apparently outweighs the higher risk of hitting the object. As

expected, the expected costs for these policies are higher in the scaled case than in the rigid case when

both objects have the same shape (Table 1 versus Table 3, and Table 2 versus Table 4). When the

uncertainty of the location of the target conditional on the location of the obstacle is low

(corresponding to the rigid case), finding the obstacle during the search yields more information,

thereby resulting in smaller expected cost.

It is also worth noting that the performance of the ADP policy with respect to Maxprob decreases

with the increase in offset for the unit-shape case. Whereas the ADP policy becomes a more viable

method with the increase in offset for the L-shape rigid case.

Table 3. The results for the Unit-shape scaled case.

Offset T

Hc
O

Hc MinProb MaxProb ADP % Imprv.

0 50 150 20.94 8.58 7.98 6.99

100 100 23.19 8.68 8.2 5.53

150 50 24.36 8.59 8.52 0.81

1 50 150 23.2 7.53 7.96 -5.71

100 100 24.3 7.78 7.84 -0.77

150 50 24.76 8.03 8.37 -4.23

Table 4. The results for the L-shape scaled case.

Offset T

Hc
O

Hc MinProb MaxProb ADP % Imprv.

0 50 150 20.99 5.89 4.98 15.45

100 100 23.13 5.98 5.31 11.20

150 50 24.15 5.97 5.43 9.05

1 50 150 23.2 5.35 5.29 1.12

100 100 24.3 5.61 5.64 -0.53

150 50 24.76 5.87 5.79 1.36

DISCUSSION

We studied a class of optimal search problems where the objective is to find a stationary target with

mimimum expected cost. Differing from other related work in the literature, we considered a search

region with objects (i.e., a target and an obstacle) that have shapes and whose locations are known

through a joint probability distribution. We formulated these problems as an MDP, which is intractable

to exact solution methods because of the size of its state space. To approximately solve these problems,

we employed an ADP technique via direct search, which tunes the resulting ADP policy based on its

performance. As a direct search method, we invoked a Simulated Annealing (SA) algorithm that solves

the resulting optimization problem where the variables are the ADP approximation parameters.

As noted earlier, ADP techniques have been successfully used for solving a variety of large-scale

MDPs. Our work demonstrated that employing these techniques to solve optimal search problems can

yield promising results as long as the approximation architecture used to approximate the value

function of the underlying MDP is properly determined. In particular, our numerical experiments

revealed that the ADP policy generally performs better than easy-to-use heuristic decision rules in the

majority of the cases. Furthermore, we observed that, the success of the ADP technique for these

problems is highly contingent on the set of basis functions chosen for the approximation architecture.

For example, we tried one set of basis functions which were the entries of the P matrix itself, but this

resulted in poor performance of the ADP policy. We also tried basis functions calculated by solving

Approximate Dynamic Programming For Optimal Search With An Obstacle

103

some sub-problems via greedy heuristics, but these were computationally expensive, and would be

impractical for real-time decision making such as MIS. It is therefore crucial to try a variety of basis

functions before finalizing the components of the ADP technique.

A challenge in applying direct search for tuning the ADP parameters is that in the end, we do not

know for sure if we have chosen basis functions that could not possibly yield good policies, or if our

global optimization approach simply did not find a good set of tunable parameters. As noted, our

motivating problem is MIS, which would require fast real-time decision making. This puts practical

constraints on the types of basis functions that may be considered. Moreover, it may not be reasonable to

invest the huge computational effort to search for a variation of ADP that outperforms a heuristic policy.

In practice, whether to apply an easy-to-use decision rule or ADP would depend on the problem

parameters.

REFERENCES

Adelman D. “Price-directed replenishment of subsets: methodology and its application to inventory

routing”. Manufacturing and Service Operations Management. 5, 4, 348-371, 2003.

Adelman D. “A price-directed approach to stochastic inventory routing”. Operations Research. 52, 4,

499-514, 2004.

Benkoski S J. Monticino, M. G., Weisinger, J. R.. “A survey of the search theory literature”. Naval

Research Logistics. 38, 469-494, 1991.

Bertsekas D, Tsitsiklis J. “Neuro-Dynamic Programming”, Athena Scientific, 1996.

Botea A, Baier J, Harabor D, Hernandez C. “Moving target search with compressed path databases”. In

Proceedings of ICAPS-13, 2013.

Chang HS, Fu MC, Hu J, Marcus SI. “Simulation-based algorithms for Markov Decision Processes”,

Springer, 2007.

Chung TH, Burdick JW. “A decision-making framework for control strategies in probabilistic search”.

Proceedings of IEEE International Conference on Robotics and Automation, 2007.

Chung TH. “On probabilistic search decisions under searcher motion constraints”. Algorithmic

Foundations of Robotics, 2010.

De Farias DP, Roy BV. “The linear programming approach to Approximate Dynamic Programming”.

Operations Research. 51, 850-865, 2003.

Dell RF, Eagle JN. Martins, G. H. A., Santos, A. G. “Using multiple searchers in constrained-path,

moving-target search problems”. Naval Research Logistics. 43, 463-480, 1996.

Derr K, Manic, M. “Multi-robot, multi-target particle swarm optimization search in noisy wireless

environments”. Proceedings of the 2nd conference on human system interactions, Catania,

Italy, 2009.

Dobbie JM. “A survey of search theory”. Operations Research. 16(3), 527–537, 1968.

Eagle JN, Yee JR. “An optimal branch-and-bound procedure for the constrained path, moving target

search problem”, Operations Research. 38, 110-114, 1990.

El-Hadidy, M. A. A., El-Bagoury, A. A. H., “Optimal search strategy for a three-dimensional randomly

located target”, International Journal of Operational Research. 29, 2015.

El-Hadidy, M. A. A. “Fuzzy Optimal Search Plan for N-Dimensional Randomly Moving Target”,

International Journal of Computational Methods. 13, 2016.

Gabal, H. M. A., El-Hadidy, M. A. A., “Optimal searching for a randomly located target in a bounded

known region”, International Journal of Computing Science and Mathematics. 6, 2015.

Haley WB, Stone LD. “Search Theory and Applications”, Plenum Press, New York, 1980.

Kulich M, Preucil L, Jose J, Bront M. “Single robot search for a stationary object in an unknown

environment”, IEEE International Conference on Robotics Automation, 2014.

Lossner U, Wegener I. “Discrete sequential search with positive switch cost”. Mathematics of Operations

Research. 7(3), 426–440, 1982.

Y. GÖÇGÜN 104

Maxwell MS, Henderson SG, and Topaloglu H. “Tuning Approximate Dynamic Programming Policies

for Ambulance Redeployment via Direct Search”. Stochastic Systems. 3, 1-40, 2013.

Najemnik J, Geisler WS. “Eye movement statistics in humans are consistent with an optimal search

strategy”, J. Vis. 8, 1-14, 2008.

Nitinawarat, S., Veeravalli, V. V., “Universal scheme for optimal search and stop”, Bernoulli. 23, 1759-

1783, 2017.

Powell WB. “Approximate Dynamic Programming: Solving the Curses of Dimensionality”, Wiley, 2007.

Ross SM. “A problem in optimal search and stop”. Operations Research. 17, 984–992, 1969.

Shechter SM, Ghassemi F, Gocgun Y, Puterman ML. “Trading off quick versus slow actions in optimal

search”. Operations Research. 63, 353-362, 2015.

Singh S., Krishnamurthy, V. “The optimal search for a markovian target when the search path is

constrained: the infinite-horizon case”. IEEE Transactions on Automatic Control, 2003.

Snider J. “Optimal random search for a single hidden target”. Physical Review. 83, 011105, 2011.

Stone LD. “Theory of Optimal Search”, Academic Press, 1975.

Suman B, Kumar B. “A survey of simulated annealing as a tool for single and multiobjective

optimization”. Journal of the Operational Research Society. 57, 1143–1160, 2006.

Sutton RS, Barto AG. “Reinforcement Learning : an introduction”, MIT Press, 1998.

Washburn A.” Search and Detection”, Fourth Edition, Institute for Operations Research and the

Management Sciences, 2002.

Wegener I. “The discrete sequential search problem with nonrandom cost and overlook probabilities”.

Mathematics of Operations Research. 5, 373–380, 1980.

Wettergren TA. “Performance of search via track-before-detect for distributed sensor networks”, IEEE

Transactions on Aerospace and Electronic Systems, 44, 2008.

Zhao Y, Patek SD, Beling PA. “Decentralized Bayesian Search Using Approximate Dynamic

Programming Methods”. IEEE Transactions on Systems, Man, and Cybernetics Part B:

Cybernetics, 38, 2008.

