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Abstract 

This study considers a supply chain management problem in which a plant 
produces and distributes a product to multiple retailers using a homogeneous fleet of 
vehicles over a finite time horizon. The aim is to decide on the production quantities 
at the plant, delivery quantities to retailers, the set of vehicles to use and the 
assignment of retailers to vehicles in each period such that the system-wide costs are 
minimized. A mixed integer linear programming formulation of the problem 
outperforming the existing ones in the literature is proposed. This study also 
compares integrated production and distribution planning with the sequential 
planning in which retailers place their own orders and the plant makes its plan based 
on these orders, and assesses the value of integrated planning. The computational 
results indicate that average cost savings of 8.9% and maximum cost savings of 28% 
can be obtained with the integrated planning over the sequential planning. 

Keywords: Supply Chain Management, Production Planning, Distribution Planning, Mixed 
Integer Linear Programming 

JEL Codes: C44, C61, M11 

Öz 

Bu çalışma, sonlu bir planlama ufku boyunca bir üreticinin bir ürünü üretip birçok 
perakendeciye türdeş bir araç filosu ile dağıttığı bir tedarik zinciri problemini ele 
almaktadır. Amaç, her bir dönemde üreticideki üretim miktarlarına, perakendecilere 
dağıtılacak ürün miktarlarına, kullanılacak araçlara ve ziyaret edilecek perakendecilerin 
hangi araçlara atanacağına, sistem maliyetini enazlayacak şekilde karar vermektir. Bu 
problem için literatürde varolanlardan daha iyi sonuçlar veren bir karışık tam sayılı 
doğrusal programlama modeli önerilmiştir. Ayrıca, üretim ve dağıtım planlamasının 
bütünleşik ele alınması perakendecilerin kendi siparişlerini verdikleri ve üreticinin 
planlamasını bu siparişlere göre yaptığı ardışık planlama ile karşılaştırılmış ve 
bütünleşik planlamanın değeri değerlendirilmiştir. Sayısal deney sonuçları bütünleşik 
planlamanın ardışık planlamaya göre ortalama %8.9 ve en çok %28 maliyet tasarrufu 
sağladığını göstermektedir.  
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Introduction 

 This study considers the supply chain management problem introduced 
by Senoussi et al. (2016). In this problem, a plant produces and distributes a 
product to multiple retailers using a homogeneous fleet of vehicles over a 
finite time horizon in a vendor-managed inventory setting in a way that the 
plant manages its own inventories as well as those of the retailers. 

 The problem considered in this study, referred to as Production-
Inventory-Distribution Problem (PIDP) in Senoussi et al. (2016), integrates 
production management at the plant, inventory management at the plant and 
retailers, and distribution management of products from the plant to retailers. 
The aim in PIDP is to decide on the production quantities at the plant, 
delivery quantities to retailers, the set of vehicles to use and the assignment 
of retailers to vehicles in each period such that the sum of the production 
setup costs at plant, inventory holding costs at plant and retailers, vehicle 
usage costs and delivery costs to retailers is minimized. It is assumed in PIDP 
that the plant is far from the retailers to be served but retailers are clustered 
(i.e., close to each other). Thus, the traveling cost of a vehicle from the plant 
to retailers is considered to incur a major fixed cost and visiting a retailer by 
a vehicle incurs a minor fixed cost instead of considering the traveling cost 
based on the order of retailers visited. 

 Integration of production, inventory and distribution management has 
significant cost savings potential and arises in industries where vendor-
managed inventory policy is adopted or when both the plant and retailers are 
owned by the same firm. Examples of such industries are petrochemical 
industry, suppliers for supermarkets, department store chains, home 
products, clothing industry, and parts distribution of automotive industry (see 
e.g., Campbell and Savelsbergh 2004:489). In particular, the PIDP arises in 
bottled water production and distribution industry, maritime transportation 
industry and distribution to service roads (Senoussi et al. 2016:972; 2018:109). 

 There are two studies on the PIDP. The first one, Senoussi et al. (2016), 
propose two mixed integer linear programming (MILP) formulations of the 
PIDP which are strengthened by several valid inequalities. They solve these 
two formulations using a commercial MILP solver. The second study, 
Senoussi et al. (2018), develop five heuristics based on genetic algorithms to 
solve the PIDP to near optimality. Kang and Kim (2010) consider the same 
problem as the PIDP except that replenishment decisions to the plant and 
inventory carrying at the plant are completely ignored. The PIDP is also 
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closely related to the one-warehouse multi-retailer (OWMR) problem and the 
production routing problem (PRP).  

 The OWMR problem is a two-level lot sizing problem in which 
replenishment quantities to the supplier (i.e. warehouse) and to retailers are 
decided. Because there is no vehicle assignment consideration in the OWMR 
problem, the PIDP is an extension of the OWMR problem. Different variants 
of the basic OWMR problem are considered in the literature. For example, 
Federgruen and Tzur (1999) study a multi-item variant of the OWMR 
problem. Chan et al. (2002) consider different ordering cost structures. Levi 
et al. (2008) study different inventory holding cost structures. Jin and Muriel 
(2009) consider capacitated replenishments to both supplier and retailers. 
Melo and Wolsey (2012) consider multiple products and multiple suppliers. 
Solyalı and Süral (2012) and Cunha and Melo (2016) present and compare 
several strong MILP reformulations for the basic OWMR problem in which 
there are no production or distribution capacity constraints. 

 The PIDP can be considered as a special case of the PRP. Unlike the 
PIDP, the PRP considers detailed routing of vehicles for distribution of 
products to retailers and their associated cost (i.e., routing cost of vehicles 
based on the order of retailers visited). The PRP is studied under different 
conditions: the single product case (e.g., Absi et al. 2015), the multi-product 
case (e.g., Fumero and Vercellis 1999), with the time windows for deliveries 
to retailers (e.g., Qui et al. 2018), under demand uncertainty (e.g., Adulyasak 
et al. 2015b). Because of its complexity, there are just a few exact algorithms 
for the PRP (Ruokokoski et al. 2010, Archetti et al. 2011, Adulyasak et al. 
2014). The most successful heuristic algorithms for the PRP are mathematical 
programming based heuristics and are those of Absi et al. (2015), Solyalı and 
Süral (2017), Russell (2017), and Chitsaz et al. (2018). For a review on 
formulations and solution algorithms proposed for the PRP, one can refer to 
Adulyasak et al. (2015a). 

 The contribution of this paper is twofold. First, an improved formulation 
of the problem is proposed. The computational results clearly reveal that the 
proposed formulation outperforms the existing ones in the literature. Second, 
integrated production and distribution planning is compared with the 
sequential planning in which retailers place their own orders and the plant 
makes its plan based on these orders in order to assess the value of integrated 
planning. While there is no study comparing integrated approaches with 
sequential approaches in the PIDP literature, a few studies are available in the 
PRP literature (see e.g., Chandra and Fisher 1994, Fumero and Vercellis 1999, 
Ruokokoski et al. 2010, and Absi et al. 2018). Note that there are only a few 
studies in the literature because of the complexity of the integrated planning 
problem and the difficulty of solving it to optimality or near-optimality. The 
major difference between this study and those comparing integrated 
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approaches with sequential approaches in the PRP literature is that all studies 
in the PRP literature consider heuristics in solving the integrated planning 
problem except Ruokokoski et al. (2010) whereas this study attempts to 
exactly solve the integrated planning problem. Note that unlike others, 
Ruokokoski et al. (2010) consider an uncapacitated single vehicle for the 
distribution of products which makes the problem easier. 

 The rest of the paper is composed of the following sections. Section 1 
describes the problem in detail and presents the mathematical programming 
formulation of the problem proposed in the literature. Section 2 includes the 
proposed mathematical programming formulation of the problem. The 
sequential planning approach is formulated and described in Section 3. The 
computational results are presented in Section 4. Finally, last section 
concludes the paper. 

1. Problem Description and Formulation 

 A production distribution system in which a plant produces and 
distributes a single product to multiple retailers using a fleet of vehicles is 
considered. The system operates under a vendor-managed inventory system 
where the plant manages the inventories of itself and multiple retailers. 
Retailers face with known demands in discrete time periods which have to be 
satisfied without backlogging. In order to meet these demands, the plant 
makes production and distributes to retailers. The plant incurs a fixed setup 
cost every time it makes a production. The plant cannot produce more than 
its production capacity in a period. However, it can produce more than it 
distributes in a time period, and thus it can hold the excess amount as 
inventory which incurs an inventory holding cost for each unit stocked in 
each time period. The production cost per unit produced is ignored as this 
cost is constant. The distribution from the plant to retailers is made using a 
fleet of homogenous vehicles. Each retailer is replenished by at most one 
vehicle in a period (i.e., split deliveries are not allowed) while a vehicle can 
replenish multiple retailers in a period provided that its capacity is not 
exceeded. The usage of a vehicle in a period incurs a fixed vehicle usage cost. 
As it is assumed that retailers are close to each other, every delivery to a 
retailer incurs a fixed delivery cost rather than a sequence-dependent routing 
cost (i.e., there are no vehicle routing decisions). Like the plant, retailers can 
hold inventory which incurs an inventory holding cost for each unit carried 
in a period. However, the inventory level of a retailer cannot exceed its storage 
capacity. Thus, the integrated production, inventory, and distribution 
problem (PIDP) is to determine the production quantities at plant, 
distribution quantities to retailers as well as the vehicles to deliver to retailers 
such that the total cost comprised of setup costs and inventory holding costs 
at the plant, inventory holding costs at retailers, vehicle usage costs, and 
delivery costs to retailers is minimized. 
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 The strictest assumptions of the problem described above are the 
adoption of vendor-managed inventory policy, known demands, and retailers 
being close to each other. Without assuming a vendor-managed inventory 
policy, the plant cannot manage the inventories of retailers as well as itself 
which means integrated planning would not be possible. If demands were 
uncertain, the model formulations presented in this paper would not be used 
and different model formulations incorporating demand uncertainty would 
be needed. Lastly, if the order of visits to retailers had a significant impact on 
the delivery cost, one would formulate the problem as a PRP which includes 
vehicle routing decisions instead of the model formulations given in this 
paper. The other assumptions of the problem like having a single plant, a 
single product, a fleet of homogeneous vehicles, not allowing backlogging at 
retailers, not allowing split deliveries and the cost terms are not rigid as one 
can easily modify the model formulations given in this paper to address 
multiple plants and products, a fleet of heterogeneous vehicles, and allowing 
backlogging and split deliveries. 

 In the following, parameters and decision variables to be used in the model 
formulation are defined. 

Parameters: 

𝑐𝑗: Delivery cost to retailer j. 

ℎ0: Inventory holding cost at plant. 

ℎ𝑗: Inventory holding cost at retailer j. 

S: Fixed setup cost at plant. 

R: Fixed cost of using a vehicle. 

J: Number of retailers. 

K: Number of vehicles. 

T: Number of time periods in the planning horizon. 

Q: Production capacity at plant. 

W: Capacity of a vehicle. 

𝑈𝑗: Storage capacity at retailer j. 

𝑑𝑗𝑡: Demand at retailer j in period t. 

Decision Variables: 

𝐼0𝑡: Inventory level of plant at the end of period t. 

𝐼𝑗𝑡: Inventory level of retailer j at the end of period t. 
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𝑝𝑡: Production quantity at plant in period t. 

𝑞𝑗𝑘𝑡: Delivery quantity to retailer j by vehicle k in period t. 

𝑥𝑗𝑘𝑡 = {
1 if vehicle 𝑘 delivers to retailer 𝑗 in period 𝑡.
0 otherwise.                                                              

   

𝑦𝑡 = {
1 if production occurs in period 𝑡.
0 otherwise.                                         

  

𝑣𝑘𝑡 = {
1 if vehicle 𝑘 is used in period 𝑡.
0 otherwise.                                     

  

 Using the above defined parameters and decision variables, Senoussi et al. 
(2016) formulated the PIDP as the following MILP formulation:  

AF: Min ∑ (𝑆𝑦𝑡 + ∑ ℎ𝑗𝐼𝑗𝑡
𝐽
𝑗=0 + ∑ 𝑅𝑣𝑘𝑡

𝐾
𝑘=1 + ∑ ∑ 𝑐𝑗𝑥𝑗𝑘𝑡

𝐾
𝑘=1

𝐽
𝑗=1 )𝑇

𝑡=1        (1) 

s.t.  

𝐼0𝑡 = 𝐼0,𝑡−1 + 𝑝𝑡 − ∑ ∑ 𝑞𝑗𝑘𝑡
𝐾
𝑘=1

𝐽
𝑗=1  1 ≤ 𝑡 ≤ 𝑇                        (2) 

𝐼𝑗𝑡 = 𝐼𝑗,𝑡−1 + ∑ 𝑞𝑗𝑘𝑡
𝐾
𝑘=1 − 𝑑𝑗𝑡      1 ≤ 𝑗 ≤ 𝐽, 1 ≤ 𝑡 ≤ 𝑇                    (3) 

𝐼𝑗𝑡 ≤ 𝑈𝑗         1 ≤ 𝑗 ≤ 𝐽, 1 ≤ 𝑡 ≤ 𝑇                    (4) 

𝑝𝑡 ≤ 𝑄𝑦𝑡        1 ≤ 𝑡 ≤ 𝑇                     (5) 

∑ 𝑞𝑗𝑘𝑡
𝐽
𝑗=1 ≤ 𝑊𝑣𝑘𝑡       1 ≤ 𝑘 ≤ 𝐾, 1 ≤ 𝑡 ≤ 𝑇          (6) 

𝑞𝑗𝑘𝑡 ≤ 𝑊𝑥𝑗𝑘𝑡        1 ≤ 𝑗 ≤ 𝐽, 1 ≤ 𝑘 ≤ 𝐾, 1 ≤ 𝑡 ≤ 𝑇   (7) 

∑ 𝑥𝑗𝑘𝑡 ≤ 1𝐾
𝑘=1         1 ≤ 𝑗 ≤ 𝐽, 1 ≤ 𝑡 ≤ 𝑇                    (8) 

𝐼0𝑡, 𝐼𝑗𝑡, 𝑝𝑡 , 𝑞𝑗𝑘𝑡 ≥ 0       1 ≤ 𝑗 ≤ 𝐽, 1 ≤ 𝑘 ≤ 𝐾, 1 ≤ 𝑡 ≤ 𝑇   (9) 

𝑥𝑗𝑘𝑡, 𝑦𝑡 , 𝑣𝑘𝑡 ∈ {0,1}       1 ≤ 𝑗 ≤ 𝐽, 1 ≤ 𝑘 ≤ 𝐾, 1 ≤ 𝑡 ≤ 𝑇. (10) 

 The objective function (1) minimizes the sum of fixed setup cost, 
inventory holding costs at the plant and retailers, fixed vehicle usage cost and 
delivery costs to retailers. Equations (2) and (3) ensure the inventory balance 
at the plant and at retailers, respectively. Constraints (4) stipulate that the 
inventory level of retailers does not exceed their storage capacities. 
Constraints (5) guarantee that the amount produced at the plant in a period 
does not exceed the production capacity of the plant. Constraints (5) also 
ensure that if a production occurs in a period, fixed setup cost is incurred in 
that period. Constraints (6) stipulate that total amount shipped to retailers by 
a vehicle is no greater than the vehicle capacity. Constraints (6) also ensure 
that if any quantity is shipped by a vehicle in a period, a fixed usage cost is 
incurred for that vehicle. Constraints (7) guarantee that if any delivery occurs 
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to a retailer in a period, the fixed delivery cost to that retailer is incurred. 
Constraints (8) ensure that a retailer can be replenished by at most one vehicle 
in a period. Constraints (9) stipulate that those variables cannot be negative 
whereas constraints (10) ensure the integrality of those variables. 

 In order to solve the AF formulation presented above more efficiently, 
this formulation is strengthened with the following inequalities by Senoussi et 
al. (2016): 

𝑣𝑘+1,𝑡 ≤ 𝑣𝑘𝑡    1 ≤ 𝑘 < 𝐾, 1 ≤ 𝑡 ≤ 𝑇          (11) 

∑ 𝑣𝑘𝑡 ≤𝐾
𝑘=1 ⌈∑ (𝑈𝑗 + 𝑑𝑗𝑡)

𝐽
𝑗=1 /𝑊⌉ 1 ≤ 𝑡 ≤ 𝑇                    (12) 

∑ 𝑞𝑖𝑘𝑡
𝐽
𝑖=1 ≥ 𝑊(𝑥𝑗𝑘𝑡 + 𝑧𝑗,𝑡−1 − 1) 1 ≤ 𝑗 ≤ 𝐽, 1 ≤ 𝑘 ≤ 𝐾,  

                                                                          1 ≤ 𝑡 ≤ 𝑇                    (13) 

𝐼𝑗𝑡 ≤ 𝑈𝑗𝑧𝑗𝑡    1 ≤ 𝑗 ≤ 𝐽, 1 ≤ 𝑡 ≤ 𝑇        (14) 

𝑧𝑗𝑡 ∈ {0,1}    1 ≤ 𝑗 ≤ 𝐽, 1 ≤ 𝑡 ≤ 𝑇            (15) 

𝐼0,𝑢−1 + ∑ 𝐼𝑗,𝑢−1
𝐽
𝑗=1 + 𝑄 ∑ 𝑦𝑙

𝑡
𝑙=𝑢   

+𝑊 ∑ ∑ ∑ 𝑥𝑗𝑘𝑙
𝑠
𝑙=𝑡+1

𝐾
𝑘=1

𝐽
𝑗=1 ≥ ∑ 𝐷𝑗𝑢𝑠

𝐽
𝑗=1  1 ≤ 𝑢 ≤ 𝑡 ≤ 𝑠 ≤ 𝑇        (16) 

𝐼𝑗,𝑢−1 + 𝑊 ∑ ∑ 𝑥𝑗𝑘𝑡
𝐾
𝑘=1 ≥𝑠

𝑡=𝑢 𝐷𝑗𝑢𝑠 1 ≤ 𝑗 ≤ 𝐽, 1 ≤ 𝑢 ≤ 𝑠 ≤ 𝑇    (17) 

∑ 𝑥𝑗𝑙𝑡
𝐾
𝑙=2 ≤ ∑ 𝑥𝑖1𝑡

𝑗−1
𝑖=1    1 ≤ 𝑗 ≤ 𝐽, 1 ≤ 𝑡 ≤ 𝑇,        (18) 

where 𝐷𝑗𝑢𝑠 = ∑ 𝑑𝑗𝑡
𝑠
𝑡=𝑢  for 1 ≤ 𝑗 ≤ 𝐽, 1 ≤ 𝑢 ≤ 𝑠 ≤ 𝑇. 

 Constraints (11) are symmetry-breaking constraints for v variables. 
Constraints (12) limit the number of vehicles to use in a period. Constraints 
(13) together with (14) and (15) are the full-truckload inequalities ensuring 
that a full vehicle is sent to retailers in a period if that vehicle in that period 
visits a retailer which has a positive inventory level at the end of the previous 

period. Note that 𝑧𝑗𝑡 variable is equal to 1 if the inventory level of retailer j is 

positive at the end of period t, and 0 otherwise. Constraints (16) and (17) are 
the extensions of well-known (l,s) inequalities for the single-item 
uncapacitated lot sizing problem (Barany et al. 1984). Constraints (18) reduce 
the number of variables. 

 Senoussi et al. (2016) called the formulation (1)–(10) as Aggregate 
Formulation (AF) and proposed another MILP formulation, referred to as 
the Echelon Stock Formulation (ESF), which is based on the echelon stock 

idea. In order to derive ESF, echelon stock variable 𝐸𝑡 in period t is defined 
as follows: 
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𝐸𝑡 = 𝐼0𝑡 + ∑ 𝐼𝑗𝑡
𝐽
𝑗=1    1 ≤ 𝑡 ≤ 𝑇.         (19) 

 Using (19), Senoussi et al. (2016) replaced 𝐼0𝑡 variables in AF with 𝐸𝑡 −

∑ 𝐼𝑗𝑡
𝐽
𝑗=1  and obtained ESF. Because AF yielded slightly better results than 

ESF in the computational experiments of Senoussi et al. (2016), ESF will not 
be considered further in this study. 

 It should be noted that constraints (12) are not valid for the PIDP because 
split deliveries to retailers are not allowed (i.e., every retailer can be visited by 
at most one vehicle in a period) and constraints (12) may eliminate some 
feasible solutions. For instance, consider the following example: T=1, J=3, 

𝐼10 = 𝐼20 = 𝐼30 = 0, 𝑑11 = 𝑑21 = 𝑑31 = 10, 𝑈1 = 𝑈2 = 𝑈3 = 2, W = 19. 
For this example, the right-hand side of (12) is two but three vehicles are 
needed to satisfy the demand of retailers. Thus, constraints (12) eliminate the 
feasible solution in this example. Because constraints (12) are invalid for the 
PIDP, they will be removed from the formulation proposed by Senoussi et 
al. (2016).  

2. Proposed Formulation 

 Because the AF formulation presented in Section 1 could not be solved 
to optimality in many test problem sets, an improved mixed integer linear 
programming formulation is proposed. In this improved formulation, tighter 
(l,s) inequalities are proposed, some of the inequalities in F are made stronger, 
and more effective symmetry-breaking inequalities are added. Using the 
echelon stock idea discussed in Section 1, the proposed formulation (PF) is 
as follows: 

PF: Min ∑ (𝑆𝑦𝑡 + ℎ0𝐸𝑡 + ∑ (ℎ𝑗 − ℎ0)𝐼𝑗𝑡
𝐽
𝑗=1 + ∑ 𝑅𝑣𝑘𝑡

𝐾
𝑘=1 +𝑇

𝑡=1

∑ ∑ 𝑐𝑗𝑥𝑗𝑘𝑡
𝐾
𝑘=1

𝐽
𝑗=1 )             (20) 

s.t. (3), (4), (6), (8)–(11), (18), 

𝐸𝑡 = 𝐸𝑡−1 + 𝑝𝑡 − 𝑑0𝑡   1 ≤ 𝑡 ≤ 𝑇         (21) 

𝐸𝑡 ≥ ∑ 𝐼𝑗𝑡
𝐽
𝑗=1     1 ≤ 𝑡 ≤ 𝑇         (22) 

𝐸𝑢−1 + ∑ min (𝑄, 𝐷0𝑙𝑡)𝑦𝑙
𝑡
𝑙=𝑢 ≥ 𝐷0𝑢𝑡 1 ≤ 𝑢 ≤ 𝑡 ≤ 𝑇         (23) 

𝐼𝑗,𝑢−1 + ∑ min (𝑊, 𝑈𝑗 + 𝑑𝑗𝑡 , 𝐷𝑗𝑡𝑠)𝑠
𝑡=𝑢 ∑ 𝑥𝑗𝑘𝑡

𝐾
𝑘=1 ≥ 𝐷𝑗𝑢𝑠  

1 ≤ 𝑗 ≤ 𝐽, 1 ≤ 𝑢 ≤ 𝑠 ≤ 𝑇    (24) 

𝑝𝑡 ≤ min (𝑄, 𝐷0𝑡𝑇)𝑦𝑡   1 ≤ 𝑡 ≤ 𝑇         (25) 

𝑞𝑗𝑘𝑡 ≤ min(𝑊, 𝑈𝑗 + 𝑑𝑗𝑡 , 𝐷𝑗𝑡𝑇) 𝑥𝑗𝑘𝑡 1 ≤ 𝑗 ≤ 𝐽, 1 ≤ 𝑘 ≤ 𝐾,  

      1 ≤ 𝑡 ≤ 𝑇            (26) 
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∑ 2(𝑗−𝑖)𝑥𝑖,𝑘+1,𝑡
𝑗
𝑖=1 ≤ ∑ 2(𝑗−𝑖)𝑥𝑖𝑘𝑡

𝑗
𝑖=1  1 ≤ 𝑗 ≤ 𝐽, 1 ≤ 𝑘 < 𝐾, 

      1 ≤ 𝑡 ≤ 𝑇,         (27) 

where 𝐷0𝑢𝑡 = ∑ 𝐷𝑗𝑢𝑡
𝐽
𝑗=1  for 1 ≤ 𝑢 ≤ 𝑡 ≤ 𝑇. 

 The objective function (20) is equivalent to (1). Equations (21) are the 
inventory balance equations of the whole system. Constraints (22) ensure that 

the inventory level of the plant is nonnegative (i.e., 𝐼0𝑡 ≥ 0 for 1 ≤ 𝑡 ≤ 𝑇). 
Constraints (23) and (24) are the extended (l,s) inequalities with Wagner-
Whitin cost structure for the PIDP. Note that these constraints are new to 
the PIDP and they are tighter (i.e., stronger) than constraints (16) and (17) as 
shown below. 

 Using (19), 𝐷0𝑢𝑡 = ∑ 𝐷𝑗𝑢𝑡
𝐽
𝑗=1 , and s = t, constraints (16) can be recast as: 

𝐸𝑢−1 + 𝑄 ∑ 𝑦𝑙
𝑡
𝑙=𝑢 + 𝑊 ∑ ∑ ∑ 𝑥𝑗𝑘𝑙

𝑡
𝑙=𝑡+1

𝐾
𝑘=1

𝐽
𝑗=1 ≥ 𝐷0𝑢𝑡  1 ≤ 𝑢 ≤ 𝑡 ≤ 𝑇. 

 As the last term of the right-hand side of the above inequality is equal to 
zero, constraints (16) for s = t  can be rewritten as 

𝐸𝑢−1 + 𝑄 ∑ 𝑦𝑙
𝑡
𝑙=𝑢 +≥ 𝐷0𝑢𝑡    1 ≤ 𝑢 ≤ 𝑡 ≤ 𝑇. 

 Because ∑ min (𝑄, 𝐷0𝑙𝑡)𝑦𝑙
𝑡
𝑙=𝑢 ≤ ∑ 𝑄𝑦𝑙

𝑡
𝑙=𝑢 , constraints (23) are tighter 

than constraints (16) when s = t. Note that constraints (23) are a subset of 
constraints (16) and there is no relationship between (16) and (23) when t > s 
in (16). 

 It is easy to observe that constraints (24) are tighter than constraints (17) 

because ∑ ∑ min (𝑊, 𝑈𝑗 + 𝑑𝑗𝑡 , 𝐷𝑗𝑡𝑠)𝑥𝑗𝑘𝑡
𝐾
𝑘=1

𝑠
𝑡=𝑢 ≤ ∑ ∑ 𝑊𝑥𝑗𝑘𝑡

𝐾
𝑘=1

𝑠
𝑡=𝑢 . 

 As the right-hand sides of (25) and (26) are tighter than constraints (5) and 
(7), respectively, constraints (25) and (26) are stronger inequalities. 
Constraints (27) which are effective symmetry-breaking constraints for x 
variables are adapted from Adulyasak et al. (2014). 

 Note that constraints (11) and (18) from AF are used in PF as well because 
they help solve PF faster. On the other hand, constraints (13)–(15) are not 
used in PF as they do not improve the solution of PF according to preliminary 
computational experiments. 

3. Sequential Planning Approach 

 In this section, the sequential planning approach is presented. In this 
approach, retailers independently place orders to the plant in order to 
minimize their own costs whereas the plant decides on its production and 
distribution plan based on the orders of retailers. 
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 The total cost of sequential planning approach can be found using a two-
phase method. In the first phase, the following formulation is solved to 
determine the time and quantity of orders for each retailer:  

S1: Min ∑ ∑ (ℎ𝑗𝐼𝑗𝑡 + 𝑐𝑗�̅�𝑗𝑡)
𝐽
𝑗=1

𝑇
𝑡=1                        (28) 

s.t. (4), 

𝐼𝑗𝑡 = 𝐼𝑗,𝑡−1 + �̅�𝑗𝑡 − 𝑑𝑗𝑡  1 ≤ 𝑗 ≤ 𝐽, 1 ≤ 𝑡 ≤ 𝑇         (29) 

�̅�𝑗𝑡 ≤ 𝑊�̅�𝑗𝑡   1 ≤ 𝑗 ≤ 𝐽, 1 ≤ 𝑡 ≤ 𝑇         (30) 

𝐼𝑗𝑡, �̅�𝑗𝑡 ≥ 0   1 ≤ 𝑗 ≤ 𝐽, 1 ≤ 𝑡 ≤ 𝑇         (31) 

�̅�𝑗𝑡 ∈ {0,1}   1 ≤ 𝑗 ≤ 𝐽, 1 ≤ 𝑡 ≤ 𝑇,         (32) 

where �̅�𝑗𝑡 denotes the quantity ordered by retailer j in period t and �̅�𝑗𝑡 is equal 

to 1 if retailer j is visited in period t, and 0 otherwise. 

 Note that S1 formulation decomposes for each retailer and the objective 
function (28) is minimizing the inventory holding cost as well as delivery cost 
at each retailer. Constraints (29) and (30) are equivalent to constraints (3) and 
(7), respectively, with the only difference being the elimination of the index 
that specifies the assigned vehicle in (29) and (30). Constraints (31) are for 
nonnegativity of variables and constraints (32) are for the integrality of 
variables. 

 Once the optimal time and quantity of orders for each retailer (i.e., �̅�𝑗𝑡) 

are determined, the following formulation is solved in the second phase in 
order to determine the production schedule at the plant and the assignment 
of order quantities of retailers to vehicles. Note that unlike the original PIDP, 
there is no restriction on the production capacity of plant and the number of 
vehicles in sequential planning approach in order to ensure the feasibility of 
solutions found. 

S2: Min ∑ (𝑆𝑦𝑡 + ℎ0𝐼0𝑡 + ∑ 𝑅𝑣𝑘𝑡
𝐾
𝑘=1 )𝑇

𝑡=1           (33) 

s.t. (6) – (8), (10), 

𝐼0𝑡 = 𝐼0,𝑡−1 + 𝑝𝑡 − ∑ �̅�𝑗𝑡
𝐽
𝑗=1  1 ≤ 𝑡 ≤ 𝑇          (34) 

𝑝𝑡 ≤ (∑ ∑ �̅�𝑗𝑢
𝐽
𝑗=1

𝑇
𝑢=𝑡 )𝑦𝑡  1 ≤ 𝑡 ≤ 𝑇          (35) 

�̅�𝑗𝑡 = ∑ 𝑞𝑗𝑘𝑡
𝐾
𝑘=1    1 ≤ 𝑗 ≤ 𝐽, 1 ≤ 𝑡 ≤ 𝑇         (36) 

𝐼0𝑡, 𝑝𝑡 , 𝑞𝑗𝑘𝑡 ≥ 0   1 ≤ 𝑗 ≤ 𝐽, 1 ≤ 𝑘 ≤ 𝐾, 1 ≤ 𝑡 ≤ 𝑇,     (37) 

where K is a sufficiently large number (e.g., K=J). 
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 The objective function (33) of S2 formulation is the sum of fixed setup 
cost and inventory holding cost at plant and the fixed vehicle usage costs. 
Constraints (34) and (35) are equivalent to constraints (2) and (5), respectively, 
with the only difference being known order quantities to retailers in (34) and 
(35). Equations (36) assign order quantities of retailers to vehicles. Constraints 
(37) ensure nonnegativity of variables. The sum of objective functions (28) 
and (33) gives the total cost of sequential planning approach. 

4. Computational Results 

 Computational experiments have been performed on benchmark 
instances in order to compare the formulation proposed by Senoussi et al. 
(2016) (i.e., AF with (11) and (13)–(18)) and the formulation proposed by this 
study (i.e., PF). The value of integration in PIDP compared to a sequential 
planning approach has also been assessed through computational 
experiments. 

 The computational experiments have been carried out on a Workstation 
with a 2.4 GHz CPU, 12 cores, and 48 GB RAM that runs on Windows 7. As 
an MILP solver, CPLEX, which is one of the state-of-the-art commercial 
solvers available in the market, is used. All formulations presented in this 
study have been solved using the default settings of CPLEX 12.7.1 with a 
single thread. One hour of time limit has been implemented for CPLEX 
12.7.1 to solve the formulations. 

 The tests have been performed on test instances generated using the 
generation scheme of Senoussi et al. (2016). The generated instances involve 
different number of time periods, retailers and vehicles as well as different 
levels of production and vehicle capacities. Table 1 shows important 
parameters of instances and their values. 

Table 1. Values of important parameters in instances* 
Parameter Values 

T 3, 6, 9 

J 5, 10, 15, 20 

K 2, 3, 4 

Q 2𝛼, 1.5𝛼 where 𝛼 = ∑ ∑ 𝑑𝑗𝑡/𝑇𝑇
𝑡=1

𝐽
𝑗=1  

W 2𝛽, 1.5𝛽 where 𝛽 = 𝑚𝑎𝑥1≤𝑡≤𝑇(∑ 𝑑𝑗𝑡)/𝐾𝐽
𝑗=1  

* Table from Senoussi et al. (2016)  

 All combinations of the parameters in Table 1 except those involving 𝑄 =
1.5𝛼 and 𝑊 = 1.5𝛽 have been considered. The instances with combinations 

involving 𝑄 = 1.5𝛼 and 𝑊 = 1.5𝛽  have not been generated as these 
instances are generally infeasible. For each combination, five instances have 
been randomly generated using uniform distribution from the intervals [5,25] 
for demand, [1,5] for unit inventory holding cost at retailers, [100,500] for the 
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delivery cost to retailers, and [2,6] multiplied with average demand (i.e., 

∑ ∑ 𝑑𝑗𝑡/(𝑇𝑇
𝑡=1

𝐽
𝑗=1 x 𝐽)) for the storage capacity at retailers. The unit 

inventory holding cost at plant, fixed setup cost at plant, fixed cost of using a 
vehicle, and initial inventory levels of both plant and retailers have been set 
to 1, 2000, 1000, and 0, respectively. Thus, 108 combinations multiplied with 
five instances for each combination results in the generation of 540 instances 
in total. 

 Summary of computational results obtained with the formulation 
proposed in this study and that of Senoussi et al. (2016) are presented in Table 
2 where first and second columns show parameters and their values, third and 
six columns the computational time needed by AF with (11) and (13)–(18) 
and PF, respectively, fourth and seventh columns remaining integrality gap 
obtained by AF with (11) and (13)–(18) and PF, respectively, and fifth and 
eighth  columns the number of instances that could not be solved to 
optimality by AF with (11) and (13)–(18) and PF, respectively.  

Table 2. Summary of computational results with formulations 

  AF with (11) & (13)–(18) PF 

Parameter Value Time Gap% #NO Time Gap% #NO 

T 3 16.88 0.00 0 6.55 0.00 0 

 6 441.21 0.02 13 275.70 0.01 9 

 9 1596.46 0.22 68 1347.89 0.15 56 

J 5 80.54 0.00 0 30.74 0.00 0 

 10 650.85 0.13 20 487.06 0.07 14 

 15 860.29 0.12 27 687.35 0.08 21 

 20 1147.71 0.08 34 968.37 0.07 30 

K 2 76.74 0.00 0 40.59 0.00 0 

 3 727.04 0.05 26 512.38 0.02 17 

 4 1250.77 0.20 55 1077.17 0.14 48 

Q 2 741.42 0.10 59 595.69 0.07 48 

 1.5 571.70 0.05 22 438.76 0.03 17 

W 2 522.71 0.04 39 394.58 0.03 31 

  1.5 1009.05 0.16 42 840.98 0.11 34 

Average 684.85 0.08 81 543.38 0.05 65 

 Key results of Table 2 are as follows: 

 The proposed formulation outperforms the existing one with regard to 
the average solution time and the remaining gap%. Furthermore, the new 
formulation managed to solve 80 more instances to optimality. 
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 As the length of the planning horizon increases, the difficulty of solving 
PIDP to optimality becomes harder for both formulations. 

 Similar to the length of the planning horizon, when the number of retailers 
or the number of vehicles increases, instances become harder to solve to 
optimality. 

 All instances with = 3, 𝐽 = 5, or 𝐾 = 2 have been solved to optimality 
by both formulations. 

 The largest remaining gap% values are obtained when 𝑇 = 9. 

 In order to assess the value of integrated planning over the sequential 
planning, the benchmark instances presented in this section are adapted by 
making both the production capacity of plant and the number of vehicles 
unlimited. In these instances, the value of K is set to three when determining 
the value of W. Because Q and K are unlimited, there are 120 instances in total 
for assessing the value of integrated planning. Note that S1 and S2 
formulations are solved for the sequential planning approach whereas PF 

formulation with sufficiently large values of Q (i.e., 𝑄 = ∑ ∑ 𝑑𝑗𝑡
𝑇
𝑡=1

𝐽
𝑗=1 ) and 

K (i.e., K = J) is solved for the integrated planning approach. 

 Summary of computational results to assess the value of integrated 
planning are presented in Table 3 where first and second columns indicate 
parameters and their values, and third column shows the average percent 
improvement obtained by integrated planning over sequential planning. 

Table 3. Summary of computational results for the value of integrated 
planning 

Parameter Value Ave-Imp% 

T 3 5.74 

 6 9.64 

 9 11.21 

J 5 10.92 

 10 9.72 

 15 7.48 

 20 7.34 

W 2 8.48 

 1.5 9.25 

Average 8.87 

Maximum 28.03 

 Key results of Table 3 are as follows: 

 On average, 8.87% improvement is obtained by solving the integrated 
problem over the sequential planning approach. 
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 The maximum percent improvement by solving the integrated problem 
over the sequential planning approach reaches to 28.03%. 

 As the length of planning horizon increases, the value of integrated 
planning increases. 

 The value of integrated planning decreases as the number of products 
becomes larger. 

 When the vehicle capacity is tighter, the value of integrated planning 
increases. 

 It should be noted that the solution time needed by the sequential planning 
approach is negligible whereas both the remaining integrality gap and the 
solution time for the integrated planning approach are similar to those of PF 
in Table 2. 

 In order to understand why integrated planning approach yields better 
results than sequential planning approach, average percentages of different 
cost components with respect to total cost are obtained for both integrated 
and sequential planning approaches and presented in Table 4. In Table 4, the 
first column shows the approach and the rest indicates average percentages 
of each cost component. 

Table 4. Average percentages of cost components of integrated and 
sequential planning approaches* 

Approach 
PlantInv 

Cost 
Setup 
Cost 

RetInv 
Cost 

Deliv 
Cost 

VehUse 
Cost 

Integrated 3.21 12.16 13.75 29.75 41.14 

Sequential 3.75 11.08 11.56 27.57 46.04 
* PlantInv Cost: Percent Inventory Holding Cost at Plant, Setup Cost: Percent Setup 
Cost at Plant, RetInv Cost: Percent Inventory Holding Cost at Retailers, Deliv Cost: 
Percent Delivery Cost to Retailers, VehUse Cost: Percent Vehicle Usage Cost. 

 As shown in Table 4, the main reason of obtaining an important 
improvement by integrated planning approach over sequential planning 
approach is the ability of the integrated planning to better plan usage of 
vehicles than the sequential planning. Although the sequential planning 
approach minimizes inventory holding cost and fixed delivery cost of each 
retailer, the integrated planning approach yields lower fixed vehicle usage 
costs than the sequential planning approach which predominates the gain 
from inventory holding cost and delivery cost of retailers. Unlike the 
sequential planning approach, the integrated planning approach considers 
vehicle usage costs together with the costs at plant and retailers. This enables 
the integrated planning approach to more efficiently use vehicles for 
distribution which in turn results in smaller total costs than the sequential 
planning approach. 
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Conclusions 

 In this study, a supply chain management problem that involves integrated 
planning of production of a product at a plant and distribution to multiple 
retailers with a homogeneous fleet of capacitated vehicles over a finite 
planning horizon is considered. The plant manages the inventories of itself 
and those of the retailers in a vendor-managed setting. An improved mixed 
integer linear programming formulation is proposed for the problem. The 
computational results show that the proposed formulation is superior to the 
existing formulations. As another contribution, this study assesses the value 
of integrated planning over the sequential planning where retailers place their 
orders and the plant makes production and distribution decisions based on 
the orders of retailers. The computational experiments indicate that average 
cost savings of 8.9% and maximum cost savings of 28% is achieved by the 
integrated planning over sequential planning.  

 As a future research avenue, more complicated integrated production and 
distribution planning problems (e.g., problem with production and 
distribution of multiple products, problems with uncertain demands, and 
problems with capacitated production at plant) can be considered. Another 
future research study is to develop tailored algorithms to solve larger instances 
of problem to optimality.   
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