IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi
  • Volume:5 Issue:2
  • Evaluation of Poor Prognosis in rRT-PCR Positive Covid-19 Cases with Using Deep Transfer Learning Ne...

Evaluation of Poor Prognosis in rRT-PCR Positive Covid-19 Cases with Using Deep Transfer Learning Network

Authors : İsmail ŞALK, Özlem POLAT, Mürşit HASBEK
Pages : 505-521
Doi:10.47495/okufbed.1024845
View : 26 | Download : 15
Publication Date : 2022-07-18
Article Type : Research Paper
Abstract :Yeni tip koronavirüsün insert ignore into journalissuearticles values(SARS-CoV-2); neden olduğu Covid-19 olarak isimlendirilen enfeksiyon, tüm dünyada hızla yayılan salgın ve ölümcül bir hastalıktır. Covid-19`un erken teşhisi, hastanın uygun tedavi almasını sağlayacak ve hayatta kalma şansını artıracaktır. Bu çalışmada derin öğrenme kullanılarak ölen ve iyileşen Covid-19 hastalarında göğüs BT görüntülerinden kötü prognoz tespitinin araştırılması amaçlanmıştır. Bu amaçla toplam 5997 CT görüntüsünü içeren bir veri seti kullanılmıştır; ve görüntüler Inception-V3 kullanılarak sınıflandırılmıştır. Sınıflandırıcıyı değerlendirmek için ROC eğrileri çizilir, performans ölçütleri olarak AUC ve doğruluk değerleri kullanılır. Inception-V3 modeli 10 kez çalıştırılmış ve maksimum %97,55 ve ortalama %97,01 sınıflandırma performansı elde edilmiştir. Sınıflandırma sonuçları, Inception-V3`ün CT görüntülerini Covid-19 prognozunun değerlendirilmesi için yüksek doğrulukla sınıflandırabildiğini kanıtlamaktadır.
Keywords : Covid 19, Konvolüsyonel sinir ağları, Transfer öğrenme, Sınıflama, Inception V3

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025