IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Ömer Halisdemir Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi
  • Volume:16 Issue:4
  • Determining the factors that most affect the ecological footprint using the artificial neural networ...

Determining the factors that most affect the ecological footprint using the artificial neural network classification feature: The case of Turkey

Authors : Sevim Gülin Demirbay, Selim Gündüz
Pages : 904-917
Doi:10.25287/ohuiibf.1206814
View : 148 | Download : 135
Publication Date : 2023-10-29
Article Type : Research Paper
Abstract :Since the end of the 20th century, ecological problems have become a priority problem due to industrialization, urbanization, technological developments and rapid population growth. The change in human living standards causes many ecological problems such as unconscious consumption of natural resources, extinction of forests and living species. Ecological Footprint is developed to measure the demand pressure that people exert on the environment. In study, Neural Network Fitting Model was used in MATLAB, for the development Artificial Neural Network (ANN) by using the data of 1996-2018 to estimate Turkey\'s ecological footprint. Urban Population, Renewable Energy Consumption, R&D Expenditures and Human Development Index were chosen as independent variables. The data were obtained from the database of "World Bank Group” and "Human Development Reports”. For the ANN, Levenberg-Marquardt algorithm was used to determine the appropriate hidden layer and hidden neurons in each layer. The data used to train an artificial neural network using feedforward and backpropagation were randomly divided into three groups for training, testing and validation purposes. R values for each stage, respectively; 0.999, 0.948, was obtained as 1. According to the results obtained, the independent variable with the greatest effect on the ecological footprint was found to be the Urban Population.
Keywords : Ecological Footprint, Artificial Neural Networks, Forecasting

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025