IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Pamukkale Spor Bilimleri Dergisi
  • Volume:15 Issue:1
  • Team Performance Indicators That Predict Match Outcome in Rugby Union

Team Performance Indicators That Predict Match Outcome in Rugby Union

Authors : Oleh Kvasnytsya, Valeria Tyshchenko, Mykola Latyshev, Iryna Kvasnytsya, Mykola Kirsanov, Oleg Plakhotniuk, Maksym Buhaiov
Pages : 203-216
Doi:10.54141/psbd.1342340
View : 99 | Download : 122
Publication Date : 2024-04-29
Article Type : Research Paper
Abstract :The aim of the study is to identify the most significant indicators of the national team\'s performance at the European Rugby Championships 15 and to design a model for predicting the outcomes of matches. Data was collected from teams’ performance at the European Rugby 15 Championships 2021, 2022 and 2023 for the analysis. The total number of matches was 41. All indicators presented in the official reports were taken: 22 for the home and away teams. The analysis of the team results was carried out according to all indicators: mean value, standard deviation, and test were used to compare the performance indicators of the winning and losing teams. Machine learning techniques were utilized to develop a predictive model for match outcomes. On one hand, 15 indicators (68.2%) are higher for teams that won (winning teams). On the other hand, 7 (31.8%) indicators are higher for teams that lost. The difference between the teams\' means varies from -56.46% (the minus indicates that this indicator is higher for the teams that lost) to 273.68%. Based on the results, the Random Forest Classifier and Extra Trees Classifier algorithms have the best prediction accuracy (0.92). The most significant indicators of team performance that affect the final result of the match are tries (196.3% – the difference between the average values of winning and losing teams), conversions (176.7%), missed tackles (- 56.46%), offload (126.3%). Based on the data obtained, refining the team training process in Rugby 15 is possible.
Keywords : European Championship, Indicator, Machine learning, Prediction, Rugby

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025