IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi
  • Volume:12 Issue:2
  • YAPAY SİNİR AĞLARI İLE KONUŞMACI KİMLİĞİNİ TANIMA UYGULAMASI

YAPAY SİNİR AĞLARI İLE KONUŞMACI KİMLİĞİNİ TANIMA UYGULAMASI

Authors : Murat CANER, Seydi Vakkas ÜSTÜN
Pages : 279-284
View : 16 | Download : 14
Publication Date : 2006-02-01
Article Type : Other Papers
Abstract :Bu çalışmada konuşma işaretinin incelenmesi ve son günlerde en popüler tanıma yöntemi olan Yapay Sinir Ağlarını insert ignore into journalissuearticles values(YSA); kullanarak Türkçe sesli harflerden kimlik tanıma uygulaması yapılmıştır. Tanıma işlemi genellikle, işaretin işlenmesi, belirgin özelliklerinin çıkarılması ve bunların karşılaştırılması safhalarından oluşmaktadır. Alınan ses örnekleri ses kartının özelliğine göre örnekleme yapılarak sayısal veri şekline dönüştürülmüştür. Ses analizi aşamasında, tüm ses verilerindeki tekrar eden periyotlar ve gürültüler hamming pencereleme metodu kullanılarak kırpılmış ve sesin özniteliğini temsil eden kısmı elde edilmiştir. Analiz edilen ses verilerinin özniteliğinin bulunması için LPC insert ignore into journalissuearticles values(doğrusal öngörü analizi); ve DFT insert ignore into journalissuearticles values(ayrık fourier dönüşümü); metodları kullanılmıştır. Kimlik tanıma işlemi için kullanılan 28 parametrenin 12 si LPC, 16 sı da DFT metodu ile elde edilmiştir. Yapay Sinir Ağlarında eğitme ve test için konuşmacının sesini temsil eden bu 28 parametre kullanılmaktadır. YSA yapısı için çok katmanlı algılayıcı modeli, eğitim için de genelleştirilmiş delta kurallı hatanın geriye yayılması algoritması kullanılmıştır. 7 farklı kişiden alınan `a` sesli harfinin öznitelikleri bulunmuş ve bunlar sesli harfin alındığı kişiyi bulacak şekilde oluşturulan YSA mimarisi eğitilmiştir. Daha sonra eğitim setinde olmayan verilerle YSA nın başarısı test edilmiş, kabul edilebilir bir hata ile iyi sonuçlar elde edilmiştir.
Keywords : Konuşmacı tanıma, Yapay sinir ağları, Doğrusal öngörü analizi, Ayrık fourier analizi

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025