IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi
  • Volume:24 Issue:5
  • Yazılım hata tahmininde kullanılan metriklerin karar ağaçlarındaki bilgi kazançlarının incelenmesi v...

Yazılım hata tahmininde kullanılan metriklerin karar ağaçlarındaki bilgi kazançlarının incelenmesi ve iyileştirilmesi

Authors : İbrahim Berkan AYDİLEK
Pages : 906-914
View : 16 | Download : 7
Publication Date : 2018-10-12
Article Type : Research Paper
Abstract :Normal 0 false false false TR X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:`Normal Tablo`; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:``; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:`Calibri`,sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:`Times New Roman`; mso-bidi-theme-font:minor-bidi; mso-ansi-language:TR;} Yazılım kalitesinin somut bir şekilde ölçülebilmesi için kullanılan sayısal yazılım metrikleri içinde bilinen ve yaygın şekilde kullanılanlar arasında McCabe ve Halstead yöntem-seviye metrikleri bulunmaktadır. Yazılım hata tahmini, geliştirilecek olan yazılımda bulunan alt modüllerin hangisi veya hangilerinin daha çok hataya meyilli olabileceğini konusunda öngörüde bulunabilmektedir. Böylece işgücü ve zaman konusundaki kayıpların önüne geçilebilmektedir. Yazılım hata tahmini için kullanılan veri kümelerinde, hata var sınıflı kayıt sayısı, hata yok sınıflı kayıt sayısına göre daha az sayıda olabildiğinden bu veri kümeleri genellikle dengeli olmayan bir sınıf dağılımına sahip olmakta ve makine öğrenme yöntemlerinin sonuçlarını olumsuz etkilemektedir. Bilgi kazancı, karar ağaçları ve karar ağacı temeline dayanan kural sınıflayıcı, nitelik seçimi gibi algoritma ve yöntemlerde kullanılmaktadır. Bu çalışmada, yazılım hata tahmini için önemli bilgiler sunan yazılım metrikleri incelenmiş, NASA’nın PROMISE yazılım veri deposundan CM1, JM1, KC1 ve PC1 veri kümeleri sentetik veri artırım Smote algoritması ile daha dengeli hale getirilerek bilgi kazancı yönünden iyileştirilmiştir. Sonuçta karar ağaçlarında sınıflama başarı performansı daha yüksek yazılım hata tahmini veri kümeleri ve bilgi kazanç oranı yükseltilmiş yazılım metrik değerleri elde edilmiştir.
Keywords : Yazılım hata tahmini, Karar ağaçları, Bilgi kazanç oranı

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025