IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi
  • Volume:28 Issue:2
  • İnsana ait protein fonksiyonlarının protein haritalama teknikleri ve derin öğrenme modeli ile tahmin...

İnsana ait protein fonksiyonlarının protein haritalama teknikleri ve derin öğrenme modeli ile tahmin edilmesi

Authors : İbrahim TÜRKOĞLU, Talha Burak ALAKUŞ
Pages : 255-265
View : 18 | Download : 9
Publication Date : 2022-04-30
Article Type : Research Paper
Abstract :Canlıların moleküler mekanizmasının anlaşılabilmesi için protein fonksiyonları önem arz etmektedir. Proteinlere ait fonksiyonlar belirlenirken, proteinlerin yapılarından yararlanılır. Protein fonksiyonları daha çok, karakterize edilmemiş protein dizilimlerinin anotasyonlarının belirleyebilmek, canlıların hücresel mekanizmalarını anlayabilmek, genlerde ya da proteinlerde hastalığa neden olan fonksiyonel değişiklileri belirleyebilmek ve hastalıkların önlenebilmesi, tedavi edilebilmesi ve teşhisi için yeni yaklaşımlar geliştirmek için kullanılmaktadır. Protein fonksiyonları deneysel yöntemlerle etkin bir şekilde belirlenebilmektedir. Ancak, deneysel yöntemlerin zaman alması ve çok sayıda kimyasal süreçten geçmesi, bu aşamaların yavaş ve maliyetli olmasına neden olmaktadır. Bunlara ek olarak, fonksiyonel yapısı ve dizilimi bilinen bazı proteinlerin anotasyonları deneysel süreçlerden dolayı halen belirlenememektedir. Bu gibi nedenler ve dezavantajlardan dolayı hesaplama-tabanlı uygulamalara ihtiyaç duyulmaktadır. Hesaplama-tabanlı uygulamalar için genellikle yapay zeka algoritmaları kullanılmaktadır. Yapay zeka yöntemleri ile protein fonksiyonlarının tahmin edilebilmesi için protein dizilimlerinin belirli haritalama yöntemleri ile sayısal hale getirilmesi gerekmektedir. Bu çalışmada, belirli protein haritalama teknikleri kullanılarak gen ontoloji tabanlı protein fonksiyonlarının tahmini gerçekleştirilmiştir. Çalışma, protein verilerinin elde edilmesi, protein dizilimlerinin sayısallaştırılması, protein fonksiyonlarının sınıflandırılması ve protein haritalama tekniklerinin performanslılarının belirlenmesi olmak üzere dört farklı aşamadan oluşmaktadır. Çalışmanın sonunda, biyolojik süreç kategorisinde en iyi doğruluk ve AUC skoru PAM250 protein haritalama tekniği ile elde edilmiş ve sırasıyla %69 ve %88 olarak hesaplanmıştır. Hücresel bileşen kategorisinde ise en iyi doğruluk ve AUC değer, sırasıyla %64 ve %89 oranı ile FIBHASH protein haritalama tekniği ile elde edilmiştir. Moleküler fonksiyon kategorisinde ise %64 AUC oranı ve %89 doğruluk değeri ile en iyi sonuç FIBHASH ile elde edilmiştir. Önerilen yapay zekâ yöntemi ile protein sayısal haritalama tekniklerinin birlikte kullanımının, protein fonksiyonlarının tahmin edilmesinde etken bir role sahip olduğu gözlemlenmiştir.
Keywords : Protein fonksiyonları, Derin öğrenme, Protein haritalama teknikleri, İki yönlü uzun kısa vadeli bellek

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025