IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi
  • Volume:30 Issue:4
  • A comparative analysis on the reliability of interpretable machine learning

A comparative analysis on the reliability of interpretable machine learning

Authors : Mustafa Yildirim, Feyza Yıldırım Okay, Suat Özdemir
Pages : 494-508
View : 40 | Download : 44
Publication Date : 2024-08-30
Article Type : Research Paper
Abstract :There is often a trade-off between accuracy and interpretability in Machine Learning (ML) models. As the model becomes more complex, generally the accuracy increases and the interpretability decreases. Interpretable Machine Learning (IML) methods have emerged to provide the interpretability of complex ML models while maintaining accuracy. Thus, accuracy remains constant while determining feature importance. In this study, we aim to compare agnostic IML methods including SHAP and ELI5 with the intrinsic IML methods and Feature Selection (FS) methods in terms of the similarity of attribute selection. Also, we compare agnostic IML models (SHAP, LIME, and ELI5) among each other in terms of similarity of local attribute selection. Experimental studies have been conducted on both general and private datasets to predict company default. According to the obtained results, this study confirms the reliability of agnostic IML methods by demonstrating similarities of up to 86% in the selection of attributes compared to intrinsic IML methods and FS methods. Additionally, certain agnostic IML methods can interpret models for local instances. The findings indicate that agnostic IML models can be applied in complex ML models to offer both global and local interpretability while maintaining high accuracy.
Keywords : Yorumlanabilir makine öğrenmesi, Temerrüt tahmini, Güvenilirlik, Jaccard dizin benzerliği, Öznitelik seçimi

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025