IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi
  • Volume:26 Issue:6
  • Fluid-Structure Interaction Analysis of Carotid Artery Blood Flow with Machine Learning Algorithm an...

Fluid-Structure Interaction Analysis of Carotid Artery Blood Flow with Machine Learning Algorithm and OpenFOAM

Authors : Murad KUCUR, Banu KÖRBAHTİ
Pages : 1131-1141
Doi:10.16984/saufenbilder.1173983
View : 22 | Download : 7
Publication Date : 2022-12-31
Article Type : Research Paper
Abstract :In this study, a patient-specific carotid artery model was analyzed with an open source program foam-extend. The research includes the effect of arterial wall deformation by fluid-structure analysis. Pulsatile velocity cycle is trained for 144 patients with different hemodynamic parameters, by machine learning algorithm using blood flow velocity measured from 337 points of the carotid artery. Data used for training is obtained from an open source in the literature. Here, the machine learning algorithm was created by the help of an open source code Phyton. Then, using trained values of machine learning, and the known systole and diastole blood pressures for a specific chosen patient, the patient-specific pulsatile velocity cycle was estimated. The estimated pulsatile velocity cycle was then fitted to Fourier series. This pulsatile velocity cycle is used as the input boundary condition for the model analyzed in foam-extend. The outlet boundary condition, pulsatile pressure cycle is found by 4-Element Windkessel algorithm. Wall shear stresses and time averaged wall shear stresses were obtained for both the rigid and fluid structure interaction models, and variation of displacement throughout the pulsatile cycle was found for the FSI model. Wall shear stresses, velocity, and displacements were obtained high at peak systole, consistent with pulsatile cycles. Like the wall shear stresses, the time averaged wall shear stresses for the FSI model were also found lower than the rigid model. The wall shear stresses showed an increase towards the exit of internal and external carotid artery.
Keywords : Carotid artery, Machine learning, OpenFOAM, Blood flow

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025