IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi
  • Volume:27 Issue:1
  • Multilayer Flexible SU8-Gold Microelectrode Arrays for Wearable Bioelectronics

Multilayer Flexible SU8-Gold Microelectrode Arrays for Wearable Bioelectronics

Authors : Murat Kaya YAPICI
Pages : 56-67
Doi:10.16984/saufenbilder.1108035
View : 15 | Download : 7
Publication Date : 2023-02-28
Article Type : Research Paper
Abstract :Wearable health trackers for vital signs monitoring are becoming ever more important especially due to the global coronavirus pandemic insert ignore into journalissuearticles values(COVID-19); caused by the SARS‑CoV‑2 virus which severely affect the respiratory system and can cause cardiac manifestations. Particularly, wearable solutions which can seamlessly monitor heart activity are critical to facilitate personal preventive and remote healthcare, as well as to allow early diagnosis of cardiac dysfunctions. A fundamental enabler of wearable bioelectronics is the sensing bioelectrode which is used to record surface biopotentials. While a plethora of attempts have been reported to realize skin-conformal dry electrodes and electronic skin patches, oftentimes a very critical aspect of the electrode i.e., the actual electrical interfacing of the wearable electrode to readout circuits without disturbing the skin-electrode contact, is overlooked. To address this issue, this paper reports a unique tri-layer, polymer-metal-polymer skin-conformal microelectrode design with sidewall metal coating to achieve vertical interconnect accesses insert ignore into journalissuearticles values(VIAs); and realize contact pads for external interfacing. The novel and optimized process flow reported herein allows repeatable fabrication of flexible electrodes in arrayed format with yields exceeding 90%. Functionality of the microfabricated electrodes were demonstrated by successful acquisition of the electrocardiogram in lead-I configuration with clear detection of the P-QRS-T complex.
Keywords : Microelectrode, wearable, biopotential, mems, ecg

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025