IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi
  • Volume:25 Issue:2
  • In-Silico Mutajenisite Tahmininde İstatistiksel Öğrenme Modeli

In-Silico Mutajenisite Tahmininde İstatistiksel Öğrenme Modeli

Authors : Enis GÜMÜŞTAŞ, Ayça ÇAKMAK PEHLİVANLI
Pages : 365-370
Doi:10.19113/sdufenbed.867067
View : 21 | Download : 8
Publication Date : 2021-08-20
Article Type : Research Paper
Abstract :Toksisite testleri arasında, bir etken nedeniyle ortaya çıkabilecek genetik değişim insert ignore into journalissuearticles values(mutasyon); olarak tanımlanabilen mutajenisite önemli yer tutmaktadır. Bu çalışmada genel olarak mutajenisite belirleme sürecini iyileştirebilmek adına in-silico yaklaşım kapsamında istatistiksel öğrenme algoritmaları kullanılmıştır. Söz konusu yaklaşım deneyler ile elde edilen mutajenisite bilgisi içeren molekül setine uygulanmış ve dikkate değer sınıflama başarıları elde edilmiştir. Çalışmada kullanılmak üzere literatürde bulunan, moleküllerden oluşan Bursi ile Benchmark veri setleri birleştirilmiş ve Molecular Operating Environment insert ignore into journalissuearticles values(MOE); programı aracılığı ile moleküllerin özellikleri hesaplanmıştır. Hesaplama sonucunda 10835 gözleme ve 193 değişkene sahip veri seti üzerinde karar ağaçları algoritmaları uygulanarak grid arama yaklaşımı ile parametre seçimi gerçekleştirilmiştir. Elde edilen en iyi parametreler ile kurulan modeller sonucunda değişkenlerin seçimi mutajenisiteyi tahmin etmedeki önem düzeylerine göre yapılmış ve verinin boyutu en etkili 72 değişkene indirgenmiştir. Seçilen değişkenlerden oluşan yeni veriye farklı istatistiksel öğrenme algoritmaları uygulanmış ve içlerinden en iyi sonuç veren beş sınıflama algoritmasına karar verilmiştir. Parametre en iyilemesi ile model başarımları arttırılan bu algoritmalar kullanılarak yaklaşık %90 mutajenisiteyi doğru sınıflama oranları elde edilmiştir.
Keywords : Sınıflama, Topluluk Öğrenmesi, XGBoost, LightGBM, Değişken Seçimi, Toksisite

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025