IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Sürdürülebilir Mühendislik Uygulamaları ve Teknolojik Gelişmeler Dergisi
  • Volume:6 Issue:2
  • A Comparison of Isolated Word Recognition Performances for Machine Learning and Hybrid Subspace Clas...

A Comparison of Isolated Word Recognition Performances for Machine Learning and Hybrid Subspace Classifiers

Authors : Serkan Keser
Pages : 235-249
Doi:10.51764/smutgd.1338977
View : 48 | Download : 57
Publication Date : 2023-12-31
Article Type : Research Paper
Abstract :One of the essential factors affecting recognition rates in speech recognition studies is environmental background noise. This study used a speech database containing different noise types to perform speaker-independent isolated word recognition. Thus, it will be possible to understand the effects of speech signals having noise on the recognition performance of classifiers. In the study, K-Nearest Neighbors (KNN), Fisher Linear Discriminant Analysis-KNN (FLDA-KNN), Discriminative Common Vector Approach (DCVA), Support Vector Machines (SVM), Convolutional Neural Network (CNN), and Recurrent Neural Network with Long Short-Term Memory (RNN-LSTM) were used as classifiers. MFCC and PLP coefficients were used as feature vectors. The DCVA classifier has been deeply tested for isolated word recognition for the first time in the literature. The recognition process was carried out using various distance measures for the KNN, FLDA-KNN, and DCVA classifiers. In addition, new (DCVA)PCA and (FLDA-KNN)PCA classifiers were designed as hybrid algorithms using Principle Component Analysis (PCA), and better recognition results were obtained from those of DCVA and FLDA-KNN classifiers. The highest recognition rate of RNN-LSTM was 93.22% in experimental studies. For the other classifiers, the highest recognition rates of the CNN, KNN, DCVA, (DCVA)PCA, SVM, FLDA-KNN, and (FLDA-KNN)PCA were 87.56%, 86.51%, 74.23%, 79%, 77.78%, 71.37% and 84.90%, respectively.
Keywords : Gürültülü Konuşma Sinyalleri, Hibrit Altuzay Sınıflandırıcılar, Makine Öğrenimi Sınıflandırıcılar, PLP, MFCC

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025