IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Tekirdağ Ziraat Fakültesi Dergisi
  • Volume:20 Issue:1
  • Traditional Machine Learning-Based Classification of Cashew Kernels Using Colour Features

Traditional Machine Learning-Based Classification of Cashew Kernels Using Colour Features

Authors : Geofrey Prudence BAİTU, Omsalma Alsadig Adam GADALLA, Y Benal ÖZTEKİN
Pages : 115-124
Doi:10.33462/jotaf.1100782
View : 26 | Download : 13
Publication Date : 2023-01-19
Article Type : Research Paper
Abstract :Kaju, Tanzanya\`nın ülke ekonomisine dış gelir olarak katkı sağlayan başlıca ticari ürünlerden biridir. Kaju çekirdeklerinin işlenmesi, halen büyük ölçüde el emeği kullanılarak yerel olanaklarla yapılmaktadır. İdeal koşullarda iyi işlenirse kajuların beyaz renkte olması beklenir. Ancak, buhar odalarında uzun süre kavurma veya aşırı kurutma gibi çeşitli faktörler nedeniyle, bazı kaju çekirdekleri hafif kahverengi bir renge dönüşebilmektedir. Renk değiştirmiş bu kajulara kavrulmuş kaju denir. Besin kalitesi de dahil olmak üzere beyaz kaju çekirdekleri ile aynı özelliklere sahip olmasına rağmen, renk ve görünüm tüketicilerin kalite algısını etkilediği için bu kaju çekirdeklerinin ayrılması gerekmektedir. Tanzanya başta olmak üzere dünyanın pek çok yerinde kaju çekirdeklerinin ayırma ve sınıflandırma işlemi elle yapılmaktadır. Uluslararası ticarette, kaju sınıflandırması çok önemli olup ürün kalitesini artırmak için üretimin bu aşamasında daha etkili ve tutarlı yöntemlerin uygulanması gerektiği anlamına gelir. Bu çalışmanın amacı, kaju çekirdeklerinin beyaz veya kavrulmuş olarak sınıflandırılmasında renk özellikleri kullanılarak geleneksel Makine Öğrenmesi tekniklerinin kullanımının değerlendirilmesidir. Bu çalışmada, görüntülerden farklı renk özellikleri çıkarılmıştır. Çıkarılan özellikler, RGB ve HSV renk uzaylarında kanalların ortalamaları insert ignore into journalissuearticles values(μ);, standart sapmaları insert ignore into journalissuearticles values(σ); ve çarpıklığını insert ignore into journalissuearticles values(γ); içerir. Python\`da Boruta Kütüphanesi kullanılarak sarmal insert ignore into journalissuearticles values(wrapper); yöntemi uygulanarak bu sınıflandırma problemi için ilgili özellikler seçilmiş ve ilgili olmayanlar çıkarılmıştır. Bu çalışmada 5 model çalışılmış ve verimlilikleri analiz edilmiştir. Değerlendirme teknikleri Lojistik Regresyon, Karar Ağacı, Rastgele Orman, Destek Vektör Makinesi ve K-En Yakın Komşu insert ignore into journalissuearticles values(KNN); yöntemleridir. Karar Ağacı modeli, %98,4 ile en düşük doğruluğu vermiştir. 100 ağaçlı Rastgele Orman modelinde maksimum %99,8 doğruluk elde edilmiştir. Uygulamadaki basitliği ve yüksek doğruluğu nedeniyle Rastgele Orman bu çalışma için en iyi model olarak önerilmektedir.
Keywords : Lojistik Regresyon, Karar Ağacı, Rastgele Orman, Destek Vektör Makinesi ve K En Yakın Komşu KNN, Kaju fıstığı

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025