- Türk Uzaktan Algılama ve CBS Dergisi
- Cilt: 6 Sayı: 1
- Ayçiçeği Çiçek Tablalarının Mask R-CNN Derin Sinir Ağı ile RGB ve Multispektral İHA Ortomozaiklerind...
Ayçiçeği Çiçek Tablalarının Mask R-CNN Derin Sinir Ağı ile RGB ve Multispektral İHA Ortomozaiklerinden Örnek Segmentasyonu
Authors : Esra Yıldırım, İsmail Çölkesen, Umut Güneş Sefercik
Pages : 57-72
Doi:10.48123/rsgis.1602369
View : 94 | Download : 85
Publication Date : 2025-03-26
Article Type : Research Paper
Abstract :Ayçiçeği, ülkemiz için önemli bir yağlı tohum kaynağı olup, büyük ve kendine özgü çiçek tablasıyla diğer tarımsal bitkilerden ayrılır. Ayçiçeği tablasının doğru bir şekilde tespit edilmesi, verim tahmini ve sürdürülebilir üretim planlaması açısından çok önemlidir. Bu çalışmanın temel amacı, derin öğrenme tabanlı Mask R-CNN modelinin RGB ve multispektral İHA ortomozaiklerinden ayçiçeği çiçek tablasını tespit etme performansının değerlendirilmesidir. Bu amaçla, Sakarya\\\'nın Arifiye ilçesindeki çalışma alanı üzerinde İHA hava fotoğrafları toplanmış ve yüksek çözünürlüklü ortomozaikler üretilmiştir. ResNet-50 omurgalı Maske R-CNN modeli, RGB ve multispektral İHA ortomozaiklerinden manuel olarak etiketlenmiş veri kümeleri üzerinde eğitilmiş ve test edilmiştir. Sonuçlar, modelin multispektral verilerle daha yüksek doğruluk elde ettiğini, tahmin edilen ve gerçek tespitler arasındaki örtüşmeyi ölçen 0,50 birleşim üzerinde kesişim eşiğinde %94,74 Ortalama Hassasiyete ve %96,73 F1 Skoruna ulaştığını göstermektedir. RGB verileriyle, model en iyi performansı 0,75 eşiğinde göstererek %78,19 F1 Skoru ve %63,50 Ortalama Hassasiyet elde etmiştir. Bu bulgular, multispektral İHA verilerinin ayçiçeği çiçek tablalarının tespit edilmesinde daha etkili olduğunu, RGB İHA verilerinin ise daha iyi lokalizasyon doğruluğu sağladığını göstermektedir.Keywords : Derin öğrenme, Örnek segmentasyonu, Mask R-CNN, İnsansız hava aracı (İHA), Hassas tarım, Ayçiçeği