IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Türkiye Uzaktan Algılama Dergisi
  • Volume:5 Issue:2
  • Çok Yüksek Çözünürlüklü Uydu Görüntülerinden Bina Çıkarımında Derin Öğrenme ve Çoklu-Çözünürlüklü Bö...

Çok Yüksek Çözünürlüklü Uydu Görüntülerinden Bina Çıkarımında Derin Öğrenme ve Çoklu-Çözünürlüklü Bölütleme Kullanılarak Nesne-Tabanlı Entegrasyon

Authors : Şaziye Özge Atik
Pages : 67-77
Doi:10.51489/tuzal.1337656
View : 101 | Download : 72
Publication Date : 2023-12-30
Article Type : Research Paper
Abstract :Son yıllarda, kentsel alanlarda yapılan analizler ve değişimlerin tespitinin hızlı ve güvenilir şekilde gerçekleştirilmesi konusundaki çalışmalarda artış olmuştur. Bu doğrultuda, binaların sınıflandırılması bilgisayarlı görünün ön plana çıkan güncel konularından biridir. Birçok alanda olduğu gibi bu konuda da derin öğrenme mimarilerinin kullanımı trend uygulamalar arasındadır. Bina ayak izinin belirlenmesi amacıyla evrişimsel sinir ağları (ESA) kullanılarak semantik segmentasyon uygulamaları yaygınlaşmıştır. Ancak derin öğrenme ile segmentasyon işlemleri sonrası elde edilen tahmin görüntülerinde karşılaşılan problemlerin başında tuz-biber etkisiyle oluşmuş gürültüler gelmektedir. Bu çalışmada güncel ESA mimarilerinden olan U-Net ve SegNet algoritmalarının kullanımının, Nesne-Tabanlı Görüntü Analizinin (NTGA), Çoklu-Çözünürlüklü Bölütleme (ÇÇB) algoritmasıyla entegrasyonu kullanılmıştır. Deneyler çok yüksek çözünürlüklü uydu görüntülerinden (Gaofen-2, Worldview-2 ve Ikonos) oluşan açık paylaşımlı Wuhan Üniversitesi Bina Çıkarımı Veri seti (WHUBED) üzerinde gerçekleştirilmiştir. ESA+ÇÇB modeli genel doğruluk, F1 skor, Dice skoru ve Intersection over Union (IoU) metriklerinde, sadece ESA kullanımıyla elde edilen tahmin sonuçlarına göre iyileştirmeler sağlamıştır. Bina sınıflandırılması ile elde edilen haritalar karşılaştırılmalı görseller olarak son kısımda sunulmuştur.
Keywords : derin öğrenme, çoklu çözünürlüklü bölütleme, nesne tabanlı görüntü analizi, entegrasyon

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025