IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Zeki Sistemler Teori ve Uygulamaları Dergisi
  • Volume:3 Issue:1
  • Assessment of Mutation Susceptibility in DNA Sequences with Word Vectors

Assessment of Mutation Susceptibility in DNA Sequences with Word Vectors

Authors : Alper YILMAZ
Pages : 1-6
Doi:10.38016/jista.674910
View : 16 | Download : 9
Publication Date : 2020-03-20
Article Type : Research Paper
Abstract :With the advent of natural language processing insert ignore into journalissuearticles values(NLP); techniques empowered with deep learning approaches, more detailed relationships between words have been unraveled. Word2Vec is quite robust in discovering contextual and semantic relationships. Genome being a long text, is subject to similar studies to unravel yet to be discovered relationships between DNA k-mers. Dna2vec applies Word2Vec approach to whole genome so that DNA k-mers are represented as vectors. The cosine similarity queries on DNA vectors reveal unusual relationships between DNA k-mers. In this study, we examined DNA sequence based prediction of mutation susceptibility. Initially,we generated word vectors for human and mouse genome via dna2vec. On the other hand, we retrieved coordinates of common and all mutations from dbSNP. For each coordinate, we extracted 8 nucleotide k-mers intersecting mutations and results are aggregated. such a way that number of mutations for each 8-mer has been tabulated. These results are incorporated with dna2vec cosine similarity data. Our results showed that for a given k-mer, k-mers with highest cosine similarity coincide with highest mutation count k-mer. In other words, the neighbor with the highest cosine similarity for a k-mer was also seen to be the neighbor overlapping the mutation count. As a result of our studies, human and mouse, dna2vec vs. mutation overlap is 80% and 70%, respectively. In conclusion, dna2vec and other word embedding approaches can be used to reveal mutation or variation characteristics of genomes without sequencing or experimental data, solely using the genome sequence itself. This might pave the way for understanding the underlying mechanism or dynamics of mutations in genomes.
Keywords : mutation, word2vec, k mer, dna2vec, cosine similarity

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025