IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Zeki Sistemler Teori ve Uygulamaları Dergisi
  • Volume:6 Issue:2
  • Self Adaptive Methods for Learning Rate Parameter of Q-Learning Algorithm

Self Adaptive Methods for Learning Rate Parameter of Q-Learning Algorithm

Authors : Murat Erhan ÇİMEN, Zeynep GARİP, Yaprak YALÇIN, Mustafa KUTLU, Ali Fuat BOZ
Pages : 191-198
Doi:10.38016/jista.1250782
View : 51 | Download : 47
Publication Date : 2023-09-23
Article Type : Research Paper
Abstract :Machine learning methods can generally be categorized as supervised, unsupervised and reinforcement learning. One of these methods, Q learning algorithm in reinforcement learning, is an algorithm that can interact with the environment and learn from the environment and produce actions accordingly. In this study, eight different on-line methods have been proposed to determine online the value of the learning parameter in the Q learning algorithm depending on different situations. In order to test the performance of the proposed methods, these algorithms are applied to Frozen Lake and Car Pole systems and the results are compared graphically and statistically. When the obtained results are examined, Method 1 has produced better performance for Frozen Lake, which is a discrete system, while Method 7 has produced better results for the Cart Pole System, which is a continuous system.
Keywords : Takviyeli Öğrenme, Q Learning, Makine Öğrenmesi

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025