IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • AJIT-e: Academic Journal of Information Technology
  • Volume:13 Issue:48
  • Netflix verileri üzerinde TF-IDF algoritması ve Kosinüs benzerliği ile bir İçerik Öneri Sistemi Uygu...

Netflix verileri üzerinde TF-IDF algoritması ve Kosinüs benzerliği ile bir İçerik Öneri Sistemi Uygulaması

Authors : Özlem GELEMET, Hakan AYDIN, Ali ÇETİNKAYA
Pages : 31-52
Doi:10.5824/ajite.2022.01.002.x
View : 16 | Download : 10
Publication Date : 2022-02-28
Article Type : Research Paper
Abstract :Günümüzde kullanıcılar dijital platformlarda kullanılan çevrimiçi içerik sitelerinde bulunan içeriklerde arama yapmak, bulmak ve bunları zaman ve mekan bağımsız olarak tüketmek istemektedirler. İnternet üzerinden yayın yapan bu platformlar arasında dünya çapında en yaygın olanlardan birisi de Netflix’tir. Bu çalışmanın amacı TF-IDF insert ignore into journalissuearticles values(term frequency–inverse document frequency); algoritması ve Kosinüs benzerliği ile Doğal Dil İşleme insert ignore into journalissuearticles values(NLP); ile Netflix kullanıcı verileri üzerinde bir içerik öneri sistemi uygulaması geliştirmektir. Bu bağlamda çalışmamızda yapılan analizler ile benzerlik yöntemleri ve uygun eşleşme verilerinin bulunması, böylelikle kullanıcılara kişisel bazda öneri yapılması hedeflenmiştir. Çalışma kapsamında hem Türkçe ve hem de diğer dillerdeki filmler ve diziler üzerinde farklı deneyler yapılmıştır. Yapılan deneyler neticesinde kosinüs benzerliği kullanılarak en yüksek benzerlik başarısı %91, en düşük benzerlik başarısı ise %43 olarak elde edilmiştir. Deneyler aynı veriler üzerinde TF-IDF algoritması ile yapıldığında ise başarı oranı %99 ile %80 arasında elde edilmiştir. Çalışma sonuçları, TF-IDF algoritması ile yapılan deneylerde, kosinüs benzerliği kullanılarak yapılan deneylere nazaran daha yüksek başarı oranının elde edildiğini ortaya koymaktadır. Çalışmamızın benzerlik yöntemleri ve uygun eşleşme verileri kullanılarak kişisel bazda öneri yapmayı hedefleyen içerik tabanlı öneri sistemi uygulamalarının geliştirilmesi bağlamında literatüre katkı sağlayacağı değerlendirilmektedir.
Keywords : Doğal Dil İşleme, TF IDF, İçerik Öneri Sistemi, Netflix

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025