IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Alphanumeric Journal
  • Volume:6, Issue:2, 2018
  • Firma Başarısızlığının Tahmin Edilmesi İçin Kümelemeye Dayalı Bir Sınıflandırıcı Topluluğu Yaklaşımı...

Firma Başarısızlığının Tahmin Edilmesi İçin Kümelemeye Dayalı Bir Sınıflandırıcı Topluluğu Yaklaşımı

Authors : Aytuğ ONAN
Pages : 365-376
Doi:10.17093/alphanumeric.333785
View : 18 | Download : 11
Publication Date : 2018-12-31
Article Type : Research Paper
Abstract :Firma başarısızlıklarının tahmin edilmesi, finansta önemli bir araştırma yönüdür. Güvenilir başarısızlık tahmin etme modellerinin geliştirilmesi, aralarında yönetim organizasyonlarının, devlet kurumlarının ve hisse senedi sahiplerinin de yer aldığı birçok farklı paydaş için oldukça yararlı olabilmektedir. Topluluk öğrenmesi yöntemi, genelleştirme hatasını azaltarak ve doğru sınıflandırma oranını artırarak, sınıflandırma algoritmalarının tahmin etme başarımını artıran önemli bir tekniktir. Topluluk öğrenmesi, firma başarısızlıklarının tahmin edilmesinde kullanılan yaygın kullanıma sahip bir yöntemdir. Yüksek başarımlı sınıflandırıcı topluluklarının oluşturulmasında çeşitlilik önemli bir rol oynamaktadır. Bu çalışmada, firma başarısızlıkların tahmin edilmesi için kümelemeye dayalı bir sınıflandırıcı topluluğu yaklaşımı sunulmaktadır. Önerilen tasarıda, k-ortalama algoritması kullanılarak, çeşitlendirilmiş eğitim alt kümeleri oluşturulmaktadır. Bu eğitim alt kümelerine dayalı olarak, sınıflandırıcı topluluğunda yer alan her bir temel öğrenme algoritması eğitilmekte ve temel öğrenme yöntemlerinin bireysel çıktıları çoğunluk oylaması aracılığıyla birleştirilmektedir. Deneysel analizlerde, dört sınıflandırma algoritması insert ignore into journalissuearticles values(C4.5 algoritması, k-en yakın komşu algoritması, destek vektör makineleri ve lojistik regresyon); ve üç topluluk öğrenmesi yöntemi insert ignore into journalissuearticles values(Bagging, AdaBoost ve rastgele alt uzay); değerlendirilmiştir.
Keywords : Firma Başarısızlığının Tahmin Edilmesi, Topluluk Öğrenmesi, Kümeleme

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025