IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Balkan Journal of Electrical and Computer Engineering
  • Volume:8 Issue:3
  • Single-Image Super-Resolution Analysis in DCT Spectral Domain

Single-Image Super-Resolution Analysis in DCT Spectral Domain

Authors : Onur AYDIN, Ramazan Gökberk CİNBİŞ
Pages : 209-217
Doi:10.17694/bajece.714293
View : 20 | Download : 10
Publication Date : 2020-07-30
Article Type : Research Paper
Abstract :Advances in deep learning techniques have lead to drastic changes in contemporary methods used for a variety of computer vision problems. Single-image super-resolution is one of these problems that has been significantly and positively influenced by these trends. The mainstream state-of-the-art methods for super-resolution learn a non-linear mapping from low-resolution images to high-resolution images in the spatial domain, parameterized through convolution and transposed-convolution layers. In this paper, we explore the use of spectral representations for deep learning based super-resolution. More specifically, we propose an approach that operates in the space of discrete cosine transform based spectral representations. Additionally, to reduce the artifacts resulting from spectral processing, we propose to use a noise reduction network as a post-processing step. Notably, our approach allows using a universal super-resolution model for a range of scaling factors. We evaluate our approach in detail through quantitative and qualitative results.
Keywords : deep learning, Super resolution, image process

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025