IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Balkan Journal of Electrical and Computer Engineering
  • Volume:12 Issue:1
  • Document Classification with Contextually Enriched Word Embeddings

Document Classification with Contextually Enriched Word Embeddings

Authors : Raad Saadi Mahmood, Mehmet Gökhan Bakal, Ayhan Akbaş
Pages : 90-97
Doi:10.17694/bajece.1366812
View : 56 | Download : 68
Publication Date : 2024-03-01
Article Type : Research Paper
Abstract :The text classification task has a wide range of application domains for distinct purposes, such as the classification of articles, social media posts, and sentiments. As a natural language processing application, machine learning and deep learning techniques are intensively utilized in solving such challenges. One common approach is employing the discriminative word features comprising Bag-of-Words and n-grams to conduct text classification experiments. The other powerful approach is exploiting neural network-based (specifically deep learning models) through either sentence, word, or character levels. In this study, we proposed a novel approach to classify documents with contextually enriched word embeddings powered by the neighbor words accessible through the trigram word series. In the experiments, a well-known web of science dataset is exploited to demonstrate the novelty of the models. Consequently, we built various models constructed with and without the proposed approach to monitor the models\' performances. The experimental models showed that the proposed neighborhood-based word embedding enrichment has decent potential to use in further studies.
Keywords : Text classification, Deep Learning, LSTM, Word2Vec, N grams

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025