IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Black Sea Journal of Engineering and Science
  • Cilt: 8 Sayı: 2
  • Classification of Vibration Data from Brownfield Milling Machines Using Machine Learning

Classification of Vibration Data from Brownfield Milling Machines Using Machine Learning

Authors : Rasim Çekik, Abdullah Turan
Pages : 371-380
Doi:10.34248/bsengineering.1583610
View : 62 | Download : 66
Publication Date : 2025-03-15
Article Type : Research Paper
Abstract :This study aims to classify vibration data obtained from old CNC milling (brownfield) machines used in industrial production processes with machine learning algorithms. The analysis of data obtained from such machines is of critical importance in order to increase the efficiency of old production machines and optimize production processes. In the study, vibration data collected from three different CNC machines under real production conditions for two years were used. The collected data were analyzed with various machine learning algorithms, especially overfitting prevention techniques, and the performances of these algorithms were compared. The results showed that the proposed machine learning methods can classify the information obtained from vibration data with high accuracy rates. The algorithms used provided an effective solution for early detection of tool wear, operational errors and other production problems caused by vibration, thus enabling more efficient management of production processes. The study presents an innovative method for modernizing old machines in particular within the framework of Industry 4.0, and provides important practical contributions in terms of improving industrial processes, optimizing maintenance processes and increasing overall efficiency.
Keywords : CNC machines, Vibration, Machine learning, Extreme learning, Classification

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025