IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • European Journal of Technique
  • Volume:13 Issue:2
  • Multilayer LSTM Model for Wind Power Estimation in the Scada System

Multilayer LSTM Model for Wind Power Estimation in the Scada System

Authors : Selahattin Barış Çelebi, Ömer Ali Karaman
Pages : 116-122
Doi:10.36222/ejt.1382837
View : 69 | Download : 56
Publication Date : 2023-12-31
Article Type : Research Paper
Abstract :Wind energy is clean energy that does not pollute the environment. However, the complex and variable operating environment of a wind turbine often makes it difficult to predict the instantaneous active power generated. In this study, a wind turbine active power estimation system based on a short-term memory network (LSTM) using time series analysis is proposed. The data obtained from the wind turbine SCADA system is used as input variables. In the proposed method, a multilayer LSTM architecture is designed to train the model. The first LSTM network consists of 64 units, and the second one consists of 32 units. This is followed by a dense layer consisting of 16 neurons. In the last layer, the architecture is finalized by using a linear activation function for the prediction process. The proposed deep learning (DL)-based LSTM prediction model takes into account environmental factors such as wind speed and wind direction for active power forecasting. The results show that the LSTM-based time series analysis method is capable of effectively capturing time series features among the data. Thus, the proposed architecture can realize high-accuracy active power forecasting.
Keywords : Power forecasting, Wind turbine energy, Long short term memory, Regression, Machine learning

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025